
A Geometric Approach to Voting

by

Lee Fisher

Honors Thesis

Appalachian State University

Submitted to the Department of Mathematical Sciences

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May 2016

Approved by:

Vicky Klima, Ph.D., Thesis Director,

Mathematical Sciences Honors Director

Mark Ginn, Ph.D., Chair, Mathematical Sciences



Abstract

This paper proposes an intuitive extension of positional weighted voting sys-

tems. A positional weighted voting system requires voters to submit fully ranked

ballots and assigns point values to a voters preferences for each rank. The voters’

rankings are sorted into the entries of a matrix called the preference matrix which

when multiplied by a vector called the weights vector returns the number of points

each candidate receives. Choosing different reasonable weights can lead to different

outcomes in an election. The paper proposes a voting system in which the winner

of an election is the candidate who would win over the greatest proportion of dis-

tinct reasonable weights vector choices. In the paper we conclude by applying the

new method to the 2010 San Francisco district representative election.



1 Introduction

In 1998 Donald Saari and Fabrice Valognes [2] pioneered the formal study of the

mathematics of voting theory. Donald Saari’s work has continued through a series of other

papers into the present day. In [2] they introduce the idea of the positional ranked voting

system, restricting their attention to three of six possible profiles for the three candidate

case. They point out many symmetries and nice properties of the Borda Count election

system. Donald Saari continues his work in [1], he extends results from [2] to consider

all six profiles for the three candidate case. He points out flaws and paradoxes involved

in picking the Condorcet winner extending results about the Borda Count naturally to

all six profiles. Later, Daughtery et al. [3] use representation theory to make statements

about three candidate elections and positional ranked voting systems. In [3] they also

point out the importance of using the sum-zero subspace to simplify calculations. Kent

Vashaw [7] in his senior honors thesis translates many of the results in [3] into results in

linear algebra. In this paper we formalize, extend, and apply a system proposed at the

end of [7].

2 Positonal Weighted Voting

Anna Anderson (A), Bart Baxter (B) , and Claire Clemmons (C) are each running

for mayor of the town of Smallsbury. Smallsbury has a tiny but active voter population,

and this year the election seems close. The Smallsbury administration is worried about

the possibility of a three way tie, so half as a precaution and half out of pure curiosity

they ask the voters to list their candidates in order of preference as opposed to simply

1



selecting their first choice when they go to vote. On the election day 260 people cast

ballots. Each voter picks one out of 3! = 6 possible rankings of candidates. The votes

are tallied and sorted as follows:

A > B > C : 50

A > C > B : 60

B > A > C : 20

B > C > A : 70

C > A > B : 20

C > B > A : 40.

The first entry tells us that 50 voters had the preference ranking: Anna first, Bart

second, and Claire third. The second entry in the list tells us that 60 voters had the

preference Anna first, Claire second, and Bart third. The fully ranked profiles allow us

to run the classical voting method just as easily as always. The first and second entries

tell us how many voters select Anna as their first choice, the third and fourth entries tell

us how many voters chose Bart as their first choice, and the last two tell us how many

voters chose Claire as their first choice. When we add the respective entries together we

get: Anna with 110 votes, Bart with 90 votes, and Claire with 60 votes. In the end,

Anna seizes victory just barely from Bart and with little contest from Claire. The story

does not end here.

The curious tallier for the Smallsbury administration studies the fully ranked profiles

2



and notices that although Anna had won with 110 votes, in the end an equal number of

people chose Anna as their last place choice. The tallier decides to rank the candidates

by the number of people who chose them for last place. In this way, Anna gets 110 last

place votes, Bart gets 80 last place votes, and Claire gets 70 last place votes. If the

Smallsbury administration had opted to choose the least disliked person instead of the

most liked person for office, Claire, who came in last, would have won!

The curious tallier grows more curious. The tallier wonders: “If I subtract the

number of last place votes from the number of first place votes, then who will win?” The

idea made sense to the tallier; a last place vote should count against you as much as a

first place vote counts for you. In this way Anna gets 110 − 110 = 0 votes, Bart gets

90− 80 = 10, and Claire gets 60− 70 = −10 votes. If we run the election this way then

Bart will win.

So in the end, who really wins? The first method, the plurality method, will choose

the candidate liked by the greatest proportion of voters, the second method, the antiplu-

rality method, will choose the candidate disliked by the smallest proportion of people,

and the third method, the Borda Count, will, intuitively, choose the candidate most

liked on “average”. All three of the voting systems seem reasonable, but could it be that

one follows the spirit of democracy better than the others? The voting systems are all

actually just special cases of positional weighted voting systems.

We start our explanation of positional weighted voting systems by reorganizing the

data. An election with many more than three candidates will have an immensely long

list of possible rankings. For example, in a six candidate election the list would be 720

entries long. The preference matrix presents the data in a more managable way.

3



Figure 1: The preference matrix for the Smallsbury election

Figure 1 gives the preference matrix for the Smallsbury election. The top left corner

of the matrix contains the sum of the first two numbers in the earlier list. That entry is

the number of voters who picked Anna as their first choice. Likewise, the top middle entry

is the number of voters who picked Anna as their second place choice. So all together

the columns from left to right of the preference matrix denote the rank of the preference

and the rows denote the candidate of preference. One more example: the bottom middle

entry would be the number of people who chose Claire as their second choice.

We can revisit the results of the curious tallier by selecting different weights vectors.

The entries of a weights vector tell us the value of a first, second, or third place vote.

When we multiply the preference matrix by the weight [1, 0, 0]T we are using the plurality

method. This weight tells us that first place choices are worth one point and the other

places are worth nothing. The product of the preference matrix with the weight yields

the results vector. The largest entry in the results vector tells us the winner:

4




110 40 110

90 90 80

60 130 70




1

0

0

 = (1)


110

90

60

 + (0)


40

90

130

 + (0)


110

80

70

 =


110

90

60

 . (1)

Anna won by the plurality method before, this confirms that the weight choice is no

different from the more casual context.

Next we will consider the weights [0, 0,−1]T and [1, 0,−1]T :


110 40 110

90 90 80

60 130 70




0

0

−1

 = (0)


110

90

60

 + (0)


40

90

130

 + (−1)


110

80

70

 =


−110

−80

−70

 (2)

and


110 40 110

90 90 80

60 130 70




1

0

−1

 = (1)


110

90

60

 + (0)


40

90

130

 + (−1)


110

80

70

 =


0

10

−10

 . (3)

Equation 2 shows the antiplurality results from before. In the same manner Equation 3

shows the Borda count results from before.

Any three real numbers will give us a weight, although that weight may not nec-

essarily be reasonable. We say that all reasonable weights have non-decreasing entries.

For instance, a weight such as [0, 0, 1]T , which gives one point to a last place vote and no

points to the other places, is unreasonable. Such a vector will elect a candidate that the

5



greatest number of people dislike. However, the plurality, antiplurality, and Borda count

weights are all reasonable weights. At this point we take a detour to formalize much of

the terminology.

3 The Linear Algebra of Voting

Consider an election with n candidates and V voters. The preference matrix is an

n× n matrix with natural number entries; the entry in the ith row and jth column is the

number of people who selected the ith candidate for jth place. Any vector in Rn can be

a weight ; however a weight is reasonable if it has non-increasing entries. We call the set

of all reasonable weights the reasonable region. The results vector is the product of the

preference matrix with the weight. If the largest value of the results vector occurs its jth

entry, then the jth candidate wins the election with that particular weight. A candidate’s

winning region is the set of all reasonable weights that will elect that particular candidate.

We can quickly observe that the rowsums and columnsums of a preference matrix are

all equal to V . This is because the total number of people who choose candidate i for

any place must be the total number of people who voted, and the total number of people

who pick any candidate for jth place must also be the total number of people who voted.

Equation 4 gives the setup for the n-candidate case;

6





v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vn1 vn2 · · · vnn





w1

w2

...

wn


=



P1

P2

...

Pn


. (4)

Multiplying a weight, ~w, by a positive scalar will not change the winner or the

election results as a ranking. A fixed preference matrix, M and a weight ~w yield the

result M ~w = [P1, P2, · · · , Pn]T . If we multiply ~w by the positive scalar a we obtain the

new results vector M(a~w) = [aP1, aP2, . . . aPn]. If P1 ≥ P2 ≥ · · · ≥ Pn then likewise

aP1 ≥ aP2 ≥ · · · ≥ aPn. Since any two weights that are positive multiples of each other

will give the same outcome, we can limit ourselves to only picking weights of the same

length. We propose one as the most convenient length for our purposes.

Adding multiples of the all ones vector to a weight will not change an elections

result either. Since all rows and columns of the preference matrix sum to the number of

voters, shifting a weight by a constant will shift the results vector by a constant without

changing the actual ranking. In symbols the justification is straightforward:

If M ~w = ~P then M(~w + a~1) = ~P + aM~1 = ~P + av~1.

This observation leads us to focus our attention on a collection of vectors orthogonal to

the all ones vector. The subspace of vectors that is orthogonal to the all ones vector and

also contains the zero vector is called the sum-zero subspace. The name is well fitting

because all vectors in this subspace have entries that sum to zero.

7



Figure 2: The unit sphere, all ones vector, sum-zero subspace, and reasonable regions

Figure 2 gives three different views of the terms we defined for the three candidate

case. The image on the left shows a picture of the unit sphere in blue, the all ones vector

in black, and the sum zero subspace in red. The images on the right and middle also show

the planes y = x, y = z, and z = x all in grey. The choice of axes corresponding to first,

second, and third place weights determines one of the six symmetric regions to be the

reasonable region. The image in the middle shows one of the regions and the image on the

right highlights the symmetry of the different possible reasonable regions. A preference

matrix induces a partition of Rn into winning regions for each of the candidates, thus

it also induces a partition of the reasonable region, sum-zero subspace, unit sphere, and

the intersection of all three.

We require one more important result for this election machinery. Because two

candidates may tie for first place, the winning regions do not completely partition Rn.

However, they almost partition the entire space. The set of all points where any two

candidates tie for first place is either a subset of dimension strictly less than n or it

a piece of Rn of dimension equal to n. We can prove that if the preference matrix is

invertible then the second possibility will not happen.

8



Theorem 1. If the preference matrix in an n-candidate election is invertible then the

region in which the candidates tie for first and second place is of dimension less than n.

Proof. We will prove the contrapositive. Take ~w1, ~w2, . . . , ~wn to be a set of n linearly

independent weights for which the same two candidates tie for first place. Without loss

of generality we say candidates one and two tie for first place for each choice of ~wi. We

call the preference matrix M , and we call the matrix whose columns are the weights ~wi,

W . The product MW is an n×n matrix whose top two rows are exactly the same. Since

we assumed the ~wi were linearly independent, W is invertible. Therefore M must not be

invertible and we are done.

Although we cannot prove our conjecture, we think that even in the non-invertible case

tieing regions are not likely to have dimension n.

4 The Total Reasonable Region Winner

With some new terminology in hand, we can now describe a new voting procedure.

We use the previous observations to ensure that the winner will be the candidate who

would win with the greatest proportion of distinct reasonable weights choices. The Total

Reasonable Region winner, or the TRR winner, is the candidate whose winning region

intersected with the surface of the unit (n− 1)-sphere and the reasonable region has the

greatest volume. Intuitively, the TRR winner is the winner most likely to win given a

random, reasonable weight. From this point on we propose two methods for computing

the TRR winner.

9



The first and most straightforward way to compute the TRR winner is by a Monte-

Carlo method. We wrote a program which picks a large number of vectors whose entries

are normally distributed with mean zero and variance one. Then the program divides all

the vectors by their Euclidean norm. The resulting vectors are uniformly distributed on

the surface of an (n− 1)-sphere. This procedure is a consequence of a result in [6](page

24) that was formalized in [4] and [5]. For a justification, consider a collection of n

indenpendent normally distributed random variables each with mean zero and variance

one. This probability distribution in Equation 5 depends only on the length of the vector

and not on any (n− 1)-spherical angles;

f(~x) =
1√

(2π)n
e−

1
2
(x2

1+x2
2+···+x2

n) =
1√

(2π)n
e−

1
2
|~x|2 . (5)

Thus, if vectors with idependent identically distributed normal variable entries with mean

zero are scaled to lie on the unit sphere then they will lie uniformly on the sphere. We

then sort the entries of the vectors to lie in the reasonable region. This does not change

their distribution. In this way we pick an arbitrary number of points on the surface of

the unit (n− 1)-sphere intersect the reasonable region.

In the three candidate case, we can find the TRR winner analytically. We begin

by reconsidering our observation about the sum-zero subspace. When we restrict our

attention to this subspace, the TRR winner and proportions do not change at all. The

sum zero subspace for three candidates is only a plane and then measuring and graphing

the candidates winning regions is feasible to do by hand. However, in larger dimensions

reducing to the sum-zero subspace only marginally reduces the computation complexity.

10



In the observation we only gave an informal justification before proceding we now

provide a formal proof.

Theorem 2. Projection onto the sum-zero subspace preserves rankings in R3.

Proof. The projection matrix for the sum-zero vector subspace is

T ≡


2/3 −1/3 −1/3

−1/3 2/3 −1/3

−1/3 −1/3 2/3

 .

If ~w is a choice of weights in R3 then T ~w is a choice of weights whose vectors sum to 0.

Consider a ranking A~w = R our goal is to show that going to A(T ~w) = R′ preserves the

ordering on R. Call V the number of voters. The points awarded to a candidate in a

positionally weighted voting system are:

PA = a11w1 + a12w2 + a13w3 = a11(w1 − w3) + a12(w2 − w3) + w3V,

PB = a21w1 + a22w2 + a23w3 = a21(w1 − w3) + a22(w2 − w3) + w3V,

PC = a31w1 + a32w2 + a33w3 = a31(w1 − w3) + a32(w2 − w3) + w3V.

Observe the effect of sending w1 to (T ~w)1, w2 to (T ~w)2, and w3 to (T ~w)3. This

11



means

w1 → 2w1/3− w2/3− w3/3,

w2 → 2w2/3− w1/3− w3/3,

w3 → 2w3/3− w1/3− w2/3.

When we make this substitution into the equations for points each candidate we need

only observe that T (~w)1 − T (~w)3 = w1 −w3 and that T (~w)2 − T (~w)3 = w2 −w3. To see

that the linear projection of the weights will only change the coefficient on V . However

since the coefficients on V in all three equations are all equal, the linear projection is

only a shift in the rankings of each candidate, so we have proven the theorem.

Theorem 3. A weight is reasonable if and only if its projection onto the sum zero sub-

space is reasonable.

Proof. We will show that a weight ~w is reasonable if and only if T (~w) is reasonable.

Suppose ~w is reasonable, this means w1 ≥ w2 ≥ w3. Now consider

T (~w) =


2w1/3− w2/3− w3/3

−w1/3 + 2w2/3− w3/3

−w1/3− w2/3 + 2w3/3

 .

Clearly w1 ≥ w2 ≥ w3 if and only if w1 ≥ w2 and w2 ≥ w3.

12



And, w1 ≥ w2 ⇐⇒
2w1

3
− w3

3
≥ 2w2

3
− w3

3

⇐⇒ 2w1

3
− w3

3
− w2

3
≥ 2w2

3
− w3

3
− w1

3

⇐⇒ T (~w)1 ≥ T (~w)2.

Also, w2 ≥ w3 ⇐⇒
2w2

3
− w1

3
≥ 2w3

3
− w1

3

⇐⇒ 2w2

3
− w1

3
− w3

3
≥ 2w3

3
− w1

3
− w2

3

⇐⇒ T (~w)2 ≥ T (~w)3.

Therefore, w1 ≥ w2 ≥ w3 if and only if T (~w)1 ≥ T (~w)2 ≥ T (~w)3.

The sum zero subspace passes through the origin. Winning regions extend orthog-

onally from the sum-zero subspace in both directions. If we measure the candidates

winning regions on the reasonable sum-zero subspace intersect the unit sphere then the

winning regions will lie in the same proportions as they would in the higher-dimensional

space.

13



5 Back to Smallsbury

Using the result about the sum zero subspace, we can find an analytical solution to

the Smallsbury election paradox. Recall the equation governing the Smallsbury election:


110 40 110

90 90 80

60 130 70




w1

w2

w3

 =


PA

PB

PC

 . (6)

We will start by picking an orthonormal basis for the sum zero subspace in R3.

We pick the basis ~u = [
1√
6
,

1√
6
,− 2√

6
]T and ~v = [

2√
2
,− 2√

2
, 0]. So any vector in the

subspace can be written as a linear combination and ~u and ~v. That is, ~w = a~u + b~v for

some a, b ∈ R. A particular choice will be reasonable if
a√
6

+
b√
2
≥ a√

6
− b√

2
≥ −2a√

6

which is true if and only if
√

3a ≥ b ≥ 0. Since we have made the suitable change of

basis, we can restrict to the unit sphere by saying:
√
a2 + b2 ≤ 1 Then using our sum

zero weights with Equation 6 yields


110 40 110

90 90 80

60 130 70




a√
6

+ b√
2

a√
6
− b√

2

−2a√
6

 =


−35
√
6a

3
+ 35
√

2b

10
√
6a

3

25
√
6a

3
− 35
√

2b

 . (7)

If we want to determine the winning regions we can start by determining the tieing

regions. Setting any two entries of the results vector from Equation 7 equal to each

other will give us a tieing line. The tieing lines form the boundaries for each candidate’s

winning region. Graphs of those lines in terms of a and b will tell the rest of the story.

14



Figure 3: In this case A � B � C

Figure 3 shows the picture of the winning regions with choices of a on the horizontal axis

and choices of b on the vertical axis.

In this case we find out that Anne is the TRR winner, but just by a hair. The reason-

able regions encopasses an angle of
π

3
. Thus Anne gets 39.02% of the reasonable region,

Bart gets 37.81% of the region and Clare gets 23.16% of the region. For comparison we

run a Monte-Carlo method to randomly select points on the reasonable unit sphere, using

1, 000, 000 points Anne gets 390, 245, Bart gets 377, 881 and Clare gets 231, 1847. The

percentages for the Monte Carlo method are: Anne with 39.025%, Bart with 37.788%,

and Clare with 23.185%, which is almost exactly what the analytic method gave as a

result. We now procede to try and find the TRR winner from a real world vote.

15



6 San Francisco

The city of San Fracisco uses a choice ranked voting system for district representative

elections. When residents vote for positions in the San Francisco administration they

select and rank their top three choices. The data for the district 10 representative election

in 2014 was available and easy to analyze [8]. The race was between five, arguably six,

candidates: Shawn M. Richard, Malia Cohen, Ed Donaldson, Marlene Tran, Tony Kelly,

and the enigmatic candidate zero: write-ins or no preference.

Handling write-ins was the first hurdle we needed to overcome to be able to find the

TRR winner. The ballot data did not distinguish between different write-ins or reveal

what the voters wrote. Since it was unfortunately impossible for the write-ins to win we

had to figure out a way to handle the data. In our first approach, we aimed to preserve

the structure that fully ranked ballots would give to a preference matrix. When we used

this approach we just threw out all the votes that had listed write in or no preference

somewhere on the ballot. Before scrubbing the data for partially ranked ballots there

were 8,171 votes, and afterwards there were 7,085 votes. So 1,086 votes were lost to

scrubbing. The incomplete preference matrix was as follows



2203 2193 2291 ? ?

1587 1599 1569 ? ?

1360 1309 1329 ? ?

1030 1089 1044 ? ?

905 895 852 ? ?


.

16



The rows from top to bottom are for candidates: Malia Cohen, Tony Kelly, Marlene

Tran, Shawn M. Richard, and Ed Donaldson. Since we only know the voters’ top three

choices and not their fully ranked preferences we do not directly know the entries of

the last two columns of the preference matrix. We wanted to continue to enforce the

restriction of having all row and column sums equal. However, this restriction alone is

not enough to infer the missing entries. We assumed that the last two columns have

equal entries. Intuitively, we made the assumption that voters on the aggregate are just

as likely to pick any one candidate for 4th place as they are to pick that candidate for 5th

place. Making this assumption allows us to fill in the rest of the matrix



2203 2193 2291 ? ?

1587 1599 1569 ? ?

1360 1309 1329 ? ?

1030 1089 1944 ? ?

905 895 852 ? ?


→



2203 2193 2291 199 199

1587 1599 1569 1165 1165

1360 1309 1329 1543 1543

1030 1089 1044 1961 1961

905 895 852 2216 2216


.

We also chose to round down any fractional entries. The adjusted preference matrix

now has the property that all rows and columns sum to nearly 7,085. The matrix is

clearly not invertible, but having a sigular preference matrix was not problematic. We

used a python program (see the appendix) that employs a Monte-Carlo algorithm to

compute the proportions of the winning regions. When we ran the program on the

generated matrix we use one million points in the calculation. Malia Cohen won all one

million randomly selected reasonable weights, which agrees with what happened in the

San Francisco election system. Malia Cohen is the current district 10 representative for

17



the San Fracisco city council. Even though the preference matrix makes it seem like it is

at least a little close, in terms of the TRR winner Malia Cohen wins by a landslide.

Using the partial data in our preference matrix would force the preference matrix to

have differing row and column sums. However, we only used this fact when we restricted

to the sum zero subpace. We did not use any of the machinery of the sum-zero subspace

to compute our winner with the Monte-Carlo method. This time we will keep all the

incomplete ballots. If a voter only picks a first place choice we will add that vote to that

candidates first place entries in the preference matrix and not add anything to any other

entries in the preference matrix. With this philosophy we also make the last two columns

of the preference matrix ~0. After reconsidering the data the new preference matrix is as

follows;



3190 3274 3229 0 0

2210 2204 2202 0 0

1727 1703 1721 0 0

1174 1214 1241 0 0

1067 1023 1045 0 0


.

From top to bottom the candidate ordering for the rows is still the same: Malia

Cohen, Tony Kelly, Marlene Tran, Shawn M. Richard, and Ed Donaldson. This time

the results are different. With one million random weight choices Malia Cohen wins

864,479, Ed Donaldson wins 132,532, and Tony Kelly wins 2,989 of them. The other

two candidates get no wins. It seems odd that when we choose to zero out the last

two columns, Ed Donaldson, the most obscure candidate, comes in second place. This

18



seems unintuitive, but voting methods similar to the anti-plurality method will favor Ed

Donaldson greatly because his obscurity implies that he is not strongly disliked.

The district 10 San Francisco city council election was not a very close election,

Malia Cohen wins in pretty much any reasonable way of interpreting the ballots. While

infrequent, closer elections can exhibit strange Smallsbury like paradoxes.

7 Future Work

In summary, we have explained the idea of a positional weighted voting system

and what it means for such a system to be reasonable. We have introduced the idea

of the TRR election system, based on the philosophy of trying all possible reasonable

weights and selecting the winner as the one who would win the most. We used symmetry

arguments and computer programs to make finding this winner a tractable problem.

Yet many questions remain unanswered. Ealier in the paper we proved that the tieing

regions would have dimension less than n if the preference matrix is invertible. We know

a necessary condition to ensure trivial tieing regions, but we do not know the sufficient

conditions and we do not know how likely it is that these conditions are met. We also

struggled with ambiguity on how to extend the TRR system to partially ranked profiles.

We do not know what the most natural extension of the TRR system is to this kind of

data or if one possible extension is more natural than others.

19



References

[1] Donald G. Saari, Explaining all three-alternative voting outcomes, J. Econom. Theory 87 (1999),

no. 2, 313–355.

[2] Donald G. Saari and Fabrice Valognes, Geometry, voting, and paradoxes, Math. Mag. 71 (1998),

no. 4, 243–259.

[3] Zajj Daugherty, Alexander K. Eustis, Gregory Minton, and Michael E. Orrison, Voting, the symmetric

group, and representation theory, Amer. Math. Monthly 116 (2009), no. 8, 667–687.

[4] George Marsaglia, Choosing a Point from the Surface of a Sphere, Ann. Math. Statist. 43 (1972),

no. 2, 645–646.

[5] Mervin E. Muller, A Note on a Method for Generating Points Uniformly on N-dimensional Spheres,

Commun. ACM 2 (1959), no. 4, 19–20.

[6] Harald Cramér, Mathematical Methods in Statistics, H. Princeton University Press, Princeton, N. J.,

1946.

[7] Kent Vashaw, Positional Weighted Voting and Linear Algebra, http://mathsci.appstate.edu/

students/honors-program/completed-honors-theses/spring-2014-theses. Accessed May 6,

2016.

[8] City and County of San Francisco Department of Elections, November 4, 2014 Official Elections

Results, http://www.sfelections.org/results/20141104/data/D10.zip. Accessed May 8, 2016.

20



Appendix

import numpy as np

import numpy.ma as ma

#This takes a text file from the interpreter and computes a good estimate of

#the projected complete preference matrix.

def createPreferenceMatrix(f):

#The Rankings vector simply puts the data from the interpreter output into

#a 2N by 2N matrix, where N is the number of candidates.

Rankings = [[], [], [], [], []]

for line in f:

Rankings[0] = f.readline().replace(’:’,’ ’).split()

Rankings[1] = f.readline().replace(’:’,’ ’).split()

Rankings[2] = f.readline().replace(’:’,’ ’).split()

Rankings[3] = f.readline().replace(’:’,’ ’).split()

Rankings[4] = f.readline().replace(’:’,’ ’).split()

#This computes the number of candidates as half the number of entries in

#one column of Rankings Vector

CandidateNumber = int(len(Rankings[0])/2)

21



#This creates a square matrix that will be the completed preference

#matrix.at the end of the upcoming loops

Matrix = np.zeros((CandidateNumber,CandidateNumber), dtype=np.int)

#Lists the first place vote numbers according to how they’re ordered to

#make everything fit right

for i in range(CandidateNumber):

Matrix[0][i] = Rankings[0][2*i+1]

#This fills in the next two columns in an order matching the order for the

#first place column of the preference matrix

for i in range(CandidateNumber):

j = 0

while(Rankings[0][2*i] != Rankings[1][2*j]):

j = j + 1

Matrix[1][i] = Rankings[1][2*j+1]

k = 0

while(Rankings[0][2*i] != Rankings[2][2*k]):

k = k + 1

Matrix[2][i] = Rankings[2][2*k+1]

#This computes the number of voters; the sum of one column of the entries

#of the candidate matrix.

22



VotingNumber = 0

for i in range(CandidateNumber):

VotingNumber += Matrix[0][i]

#This fills in the rest of the preference matrix under the assumption that

#voters are equally likely to swap lower ranked choices. That all votes

#for ranks less than three are equal. It also trunucates fractional

#entries by casting as an int. The estimated preference matrix will almost

#obey the rule that column and rowsums are equal to the number of voters.

#It’s commented out right now, uncomment it to make the adjustment.

#for i in range(CandidateNumber - 3):

# for j in range(CandidateNumber):

# Matrix[i+3][j] = int((VotingNumber - Matrix[0][j]-Matrix[1][j]-

# Matrix[2][j])/(CandidateNumber - 3))

print(Matrix)

return Matrix

#This will take the preference matrix, as well as a user given input on how

#many points to use in the procedure. It will pick that many points within the

#unit n-cube, and then mask by the restricting to lie in the unit n-sphere,

#and restricting them to have reasonable entries. With the remaining points it

23



#will run the election with each choice of weight and tally the number of wins

#for each candidate. The function will return this tally.

def RunElection(preferences, PointNum):

#makes the dimension of the n-cube

Dimension = len(preferences)

#Makes tons of data points normally distributed with mean 0 and variance 1

Data = np.random.normal(0.0,1.0,(PointNum,Dimension))

#Scales everything to lie on the unit n-sphere and then sorts each weight

#to be in the reasonable region.

for i in range(PointNum):

k = np.sqrt(np.sum(np.square(Data[i])))

for j in range(Dimension):

Data[i,j] = Data[i,j]/k

Data[i] = sorted(Data[i], reverse = True)

print("\n")

#Multiplies the preference matrix with the random data and records

#the results. Don’t mess with this!! Science says it is right.

Results = np.zeros((PointNum,Dimension), dtype=np.float)

for i in range(PointNum):

for k in range(Dimension):

24



for j in range(Dimension):

Results[i,k] += preferences[j,k] * Data[i,j]

#Tallies how many elections each candidate wins

Tally = np.zeros(Dimension, dtype = np.int)

for i in range(PointNum):

if(Results[i][0] != 0):

j = np.argmax(Results[i])

Tally[j] += 1

print(Tally)

return Tally

#This is the main function, it runs when the code is executed

if __name__ == "__main__":

# prompts the user to select a Interpretation data file

data = input("Name the file you want to analyze: ")

p = int(input("How many points should I use in the calculation?..."))

f = open(data,’r’)

#Creates the more readable results file

g = open(’Outcome’+ data, ’w’)

Preferences = createPreferenceMatrix(f)

25



FinalOutcome = RunElection(Preferences, p)

#This writes the data into the interpretation file.

for x in range(len(FinalOutcome)):

g.write(str(FinalOutcome[x]) + " \n")

g.close

f.close

26


