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Abstract

In this work we introduce the reader to the program of reverse mathematics.

This is done by discussing second order arithmetic and constructing the big five

subsystems of second order arithmetic used in reverse mathematics. These five

subsystems may be used to classify mathematical theorems in terms of their logical

strength. A theorem independent of this classification is considered as well. The

work concludes with an original article by Hirst and Hughes in which marriage

theorems are analyzed via the language of reverse mathematics.
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I Introduction

Mathematics, since its inception, has played a very important role in scientific thought,

aiding in the development and expansion of human knowledge. Though this was the

case, it was not until the 19th century and the abstraction of modern mathematics that

mathematicians began looking deeper into what we call foundations of mathematics.

Questions regarding some of the most basic mathematical concepts were brought to light:

what is a number, a function, or a set? What are the appropriate axioms for use of

numbers, functions, and sets? And how do we classify an “appropriate” set of axioms?

This attention to foundational questions gave rise to the field of mathematical logic within

which strict formalization gives us better insight into the inner workings of mathematics.

Much progress has been made in this field, but there are always more questions to

be answered. One such pervading question is “what is the appropriate axiomatization

of mathematics?” This is an extremely difficult question due to its shear scope. In an

effort to gain insight into this question, let us ask something more specifc. We can

divide mathematics into two subcategories, that of set theoretic mathematics and non-set

theoretic mathematics. We will refer to the latter category as ordinary mathematics. We

may make this distinction because set theoretic mathematics in general requires a much

“stronger” axiomatization than ordinary mathematics.

The de facto axiomatization for set theoretic mathematics are the Zermelo-Fraenkel

axioms, or ZF. Zermelo proposed the first axiomatic set theory in 1908 [21] but it was not

until the early 1920s that Fraenkel would bolster this axiom system to what we know today

as ZF [4]. As these are the axioms for set theoretic mathematics, they must assert the

existence of some extremely sophisticated sets. For instance, if P(X) is the set containing

every subset of X, then ZF can verify the existence of the set {Z0,P(Z0),P(P(Z0)), . . . }

for any infinite set Z0. Therefore, if we rank the strength of an axiom system by the set
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comprehension (how many sets that can be proven to exist) we see that ZF is extremely

strong. It turns out that for the majority of ordinary mathematics, this extensive set

comprehension is not needed. In fact, much weaker axiom systems can be used.

In the 1930s, Hilbert and Bernays published Grundlagen der Mathematik (Foundations

of Mathematics) Volumes I [10] and II [11] which introduced second order arithmetic.

This is an alternative foundation within which one can formalize much, but not all, of

mathematics. Second order arithmetic is much weaker than ZF; we may only assert the

existence of countable sets. It is interesting that a large amount of mathematics can be

done with this little set comprehension. Indeed, even weaker systems than second order

arithmetic can be used to do a substantial amount of mathematics. This provides a natural

motivation for comparing mathematical theorems via the amount of set comprehension

needed to state and prove them. Let us examine a possible strategy for “calibrating” the

logical strength of mathematics via set comprehension.

Consider a weak axiom system B in which we are afforded little set comprehension.

We will refer to B as the base theory. Suppose we have two mathematical theorems ζ1

and ζ2 such that ζ1 is provable in B and ζ2 is not. Suppose that instead an additional

axiom A′, appending more set comprehension to B, is needed to prove ζ2. We have that

B ` ζ1 and B + A′ ` ζ2.

We may immediately conclude that ζ2 is a stronger theorem than ζ1 relative to our base

theory because ζ2 requires more set comprehension to be proven. Note that B + A′ ` ζ2

is equivalent to stating B ` A′ → ζ2.

We have gained a small amount of insight into appropriate axiomatizations for the

theorems ζ1 and ζ2 but we can do better. This is where the notion of “reversing”

mathematics comes into play. We know the additional set comprehension afforded by A′
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is needed to prove ζ2 but it could be the case that A′ provides more set comprehension

than needed. (There could be a weaker axiom that proves ζ2 when added to B.) We can

see if this is the case by deriving A′ from the system B + ζ2, that is, proving that

B ` ζ2 → A′.

If we can do this, we will have shown that

B ` A′ ↔ ζ2,

which implies that A′ appends the exact amount of set comprehension needed to prove ζ2.

We now have clearly measured the difference in the logical strength of ζ1 and ζ2.

We call deriving A′ from B + ζ2 reversing ζ2 to A′. The name reversal comes from

the idea that we are doing mathematics backwards. The usual practice is to derive

mathematical theorems from a set of axioms and we instead derived an axiom from a

mathematical theorem.

Suppose we consider a third theorem ζ3 and after some analysis find that the axiom

A′′ is needed in order to prove ζ3 in the base theory. Assume we have found the reversal

of ζ3 to A′′ as well. So,

B ` A′′ ↔ ζ3.

We conclude ζ3 is stronger than ζ1 but more information is needed to understand the

relationship between ζ2 and ζ3. We need to know how the axioms A′ and A′′ compare.

At this point, we may wonder if this is a lucrative strategy. Determining the relationship

between A′ and A′′ may be very difficult and as we study more and more theorems we

may find that an unmanageable amount of axioms are needed to classify their logical

strength. The insight at the heart of reverse mathematics is that with the correct base
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theory, only four additional axioms are needed to classify an enormous amount of ordinary

mathematics. Moreover, the systems obtained from appending each of these axioms to

the base theory form a natural hierarchy with which we may categorize mathematical

theorems. We call the program dedicated to classifying mathematical theorems with these

five systems the program of reverse mathematics.

Friedman introduced the five systems and the program of reverse mathematics in the

1970s. The base theory is denoted RCA0 and the four additional systems obtained from

appending set comprehension axioms are

WKL0 ACA0 ATR0 Π1
1 − CA0.

Each is a subsystem of second order arithmetic. From left to right, the systems increase

in logical strength. Friedman introduced prototypes for these five systems in [5]. Later,

in [6], Friedman introduced the systems we use today which have less induction than the

originals. These systems are commonly referred to as the big five.

Reconsider our three theorems in the setting of reverse mathematics. Suppose we find

that

RCA0 ` ζ1,

RCA0 ` WKL0 ↔ ζ2,

RCA0 ` ATR0 ↔ ζ3.

We then know exactly how strong each theorem is and how they relate. ζ1 is the weakest

theorem, ζ2 is one level stronger on our scale and ζ3 is the strongest at level four of our

hierarchy.

This analysis can be done for a remarkable amount of ordinary mathematics. Other

systems may be used to the same end and there are many theorems which lie outside
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this classification, but an impressive amount can be learned from this program. The

classification has flourished over the past forty years and encompasses many theorems

from algebra and analysis as well as topology, mathematical logic and many other fields.

On a grander scale, reverse mathematics can be done with very strong axiom systems.

Friedman has done work using ZFC (ZF with the axiom of choice) as the base theory to

consider theorems which are independent of the usual axiomatization of mathematics.

This allows conclusions to be made as to whether these theorems are reasonable to accept

or not. We will not consider reverse mathematics of this type. See Friedman’s work on

boolean relation theory.

In this work we will first consider the system of second order arithmetic before

constructing each of the big five subsystems and analyzing the mathematics classified by

them. In §II.7 we consider a theorem that is independent of this classification. The last

section, §III, presents an original article written by Hirst and Hughes in which several

marriage theorems (as defined in the article) are analyzed and classified via the program

of reverse mathematics. This article has been submitted to the Archive for Mathematical

Logic.

II Touring the Subsystems

II.1 Second Order Arithmetic

The machinery of Friedman’s program of reverse mathematics is realized in second order

arithmetic. Second order arithmetic can be described in terms of its language, that is

the symbols we can use to build formulae and its models which serve as the semantic

interpretation for the words and formulae we form using the syntax of our language.

We will denote the language of second order arithmetic by L2. L2 is a two sorted
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language, meaning there are two types of variables which range over two distinct classes

of objects. The first type are number variables, denoted by lower-case roman letters, for

example i, j, k,m, and n. The second are set variables, denoted by upper-case roman

letters, e.g. X, Y, and Z. Canonically, the number variables are intended to range over

the set of natural numbers denoted ω = {0, 1, 2, . . . }, and the set variables are intended

to range over the collection of subsets of ω denoted P(ω).

The remaining elements of L2 are used to define terms and formulae. In L2, there are

two binary operation symbols, + and ·, and two constant symbols, 0 and 1. Numerical

terms are number variables, the symbols 0,1, and t + t′ and t · t′ where t and t′ are

numerical terms. There are three atomic formulae in L2, namely: t = t′, t < t′, and t ∈ X

where X is any set variable. (Numerical terms are meant to denote natural numbers, in

which case these formulae take on the usual meaning, i.e. t equals t′, t is less than t′, and

t is an element of X.) Using the logical connectives ∧,∨,¬,→,↔ (and, or, not, implies, if

and only if), number quantifiers, ∃n, ∀n (there exists n, for all n) and set quantifiers, ∃X,

∀X, we may form other formulae from the three atomic formulae. Variables which are

not quantified are called free. A formula with no free variables is called a sentence. The

universal closure of a formula ϕ is the sentence obtained by adding a universal quantifier

(∀) for every free variable in ϕ.

Definition 1 (L2-models). A model for L2 is an ordered 7-tuple

M = (M ′,SM ,+M , ·M , 0M , 1M , <M)

where M ′ is a set and SM is a set of subsets of M which are respectively the range of

number variables and set variables, +M and ·M are binary operations on M ′, 0M and

1M are specific elements in M ′, and <M is a binary relation on M ′. M ′ and SM are

understood to be nonempty disjoint sets.
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We may find many such models for L2 but the intended model, which coincides with

the canonical interpretations of expressions in L2 mentioned above, is

(ω,P(ω),+, ·, 0, 1, <)

where ω and P(ω) are as above and +, ·, 0, 1, < take on their natural interpretation. In

general, an ω-model differs from the intended model only by replacing P(ω) with some

set S so that ∅ 6= S ⊆ P(ω). There are still other types of models of L2, but they reach

beyond the scope of this treatise. See Part B of Simpson [18].

Using the preceding discussion, we may formulate the axiom system for full second

order arithmetic.

Definition 2 (Second Order Arithmetic). The universal closure of the following L2-

formulae along with classical predicate calculus make up the axioms of second order

arithmetic:

(i) basic axioms:

Classical predicate calculus with equality.

n+ 1 6= 0

m+ 1 = n+ 1→ m = n

m+ 0 = m

m+ (n+ 1) = (m+ n) + 1

m · 0 = 0

m · (n+ 1) = (m · n) +m

¬m < 0

m < n+ 1↔ (m < n ∨m = n)

(ii) induction axiom:

(0 ∈ X ∧ ∀n (n ∈ X → n+ 1 ∈ X))→ ∀n (n ∈ X)
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(iii) comprehension scheme:

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any formula of L2 in which X does not occur freely.

This system is extremely rich in the amount of mathematics that it can express. The

comprehension scheme asserts the existence of the set X which is defined by ϕ(n). If ϕ(n)

was to be the formula ∃m(m+m+m = n) then the comprehension scheme ensures the

existence of the set of multiples of three. Free variables may appear in ϕ(n) in which case

they are referred to as parameters.

It turns out that in any ω-model of L2 the full second order induction scheme is

satisfied, that is, the universal closure of

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n)

where ϕ(n) is any formula of L2.

A formal system is defined by specifying a language and a set of axioms, we then

call a theorem any formula of the given language which is logically deducible from the

axioms. Thus, by the system of second order arithmetic Z2 we mean the formal system

in L2 made up of the axioms in Definition 2 and any and all formulae of L2 which may

be deduced from the axioms. We use predicate calculus for this deduction, including

the usual equality axioms and the law of excluded middle. For a thorough treatment of

predicate calculus see Hamilton [9].

We may now define a subsystem of Z2 by any formal system in L2 whose axioms are

each a theorem of Z2. Z2 has infinitely many subsystems but we will be concerned with

very few of them, that is the big five. Each subsystem we will investigate will consist of the

basic axioms of Z2 with limitations imposed upon the induction and set comprehension
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schemata. The differences in the limitations of each subsystem yields a hierarchy in the

five systems through which we may calibrate the logical strength of theorems in ordinary

mathematics.

In order to discuss our base subsystem RCA0, we need to define some categories of

formulae.

Definition 3 (Bounded Quantifiers). Let ϕ be a formula of L2, n a number variable,

and t a numerical term in which n does not occur. The formulae ∃n(n < t ∧ ϕ) and

∀n(n < t → ϕ) are abbreviated (∃n < t)ϕ and (∀n < t)ϕ respectively. The quantifiers

∃n < t and ∀n < t are bounded quantifiers.

Definition 4 (Σ0
k and Π0

k formulae). An L2 formula is Σ0
0 if it consists of only atomic

formulae, logical connectives and bounded quantifiers. For k ∈ ω, an L2 formula is Σ0
k, re-

spectively Π0
k, if it is of the form ∃n 1∀n 2,∃n 3, . . . , nkϕ respectively ∀n 1∃n 2,∀n 3, . . . , nkϕ

where ϕ is Σ0
0.

Thus a Π1
0 formula is of the form ∀n θ with θ being Σ0

0. Though these formulae

contain no set quantifiers, they may contain free set variables. It is important to note

that the negation of a Σ0
k formula is Π0

k and vice versa. Now that we have established the

differences between formulae in L2 we are ready to begin our tour of the subsystems.

II.2 Recursive Comprehension: RCA0

RCA0 plays a pivotal role in reverse mathematics by serving as the “weak base theory”

we work over. (Though it is the weakest of the big five there are still weaker subsystems

over which theorems may be proven equivalent to RCA0.)

RCA stands for “recursive comprehension axiom”. This is because the set comprehen-

sion of RCA0 is only powerful enough to assert the existence of recursive sets of natural

numbers. (These sets are sometimes referred to as computable.) An example of a set that
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is recursive is X = {2n | n ∈ ω}, i.e. the set of even natural numbers. To show this set is

recursive we need two Σ0
1 formulae, one to delineate n ∈ X and one to delineate n 6∈ X,

that is

ϕ(n) denotes n is an element of X, and

ψ′(n) denotes n is not an element of X.

In our example ϕ describes even numbers while ψ′ describes odd numbers; let ϕ be

the formula ∃m (2 · m = n) and ψ be the formula ∃m (2 · m + 1 = n). We may now

algorithmically compute X by checking to see for which n ∈ ω ϕ(n) or ψ′(n) holds. This

will determine which n belong to X. This ability to verify both what is in and what is not

in X is what makes it recursive; we could ask a computer to calculate X by starting at

n = 0 and working its way through ω. The following formula asserts the existence of X:

∀n (ϕ(n)↔ ¬ψ′(n))→ ∃X ∀n (n ∈ X ↔ ϕ(n)).

To simplify this, let ψ(n) denote the negation of ψ′(n) so that

ψ(n) = ¬ψ′(n) = ¬∃m (2 ·m+ 1 = n) = ∀m¬(2 ·m+ 1 = n).

Notice this makes ψ(n) a Π0
1 formula and we may restate the formula asserting the

existence of X:

∀n (ϕ(n)↔ ψ(n))→ ∃X ∀n (n ∈ X ↔ ϕ(n)).

We will say ϕ(n) is ∆0
1 because it is equivalent to both a Σ0

1 and a Π0
1 formula. We are

ready to present the set comprehension scheme for RCA0.

Definition 5 (∆0
1 Comprehension). The scheme of ∆0

1 comprehension consists of all
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axioms of the form

∀n (ϕ(n)↔ ψ(n))→ ∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is Σ0
1, ψ(n) is Π0

1, and X is not free in φ(n).

The subscript 0 in RCA0 indicates limited induction in this system, specifically, what

we call Σ0
1 induction. In general, we define Σ0

k and Π0
k induction as follows.

Definition 6 (Σ0
k and Π0

k Induction). For each k ∈ ω, the scheme of Σ0
k induction

(respectively Π0
k induction) consists of all axioms of the form

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀nϕ(n)

where ϕ(n) is any Σ0
k (respectively Π0

k) formula of L2.

With definitions 5 and 6 taken care of we are ready to formally define RCA0.

Definition 7 (The subsystem RCA0). RCA0 is the formal system in the language L2

whose axioms consist of the basic axioms from Definition 2(i) plus the schemata of Σ0
1

induction and ∆0
1 comprehension.

The minimum ω-model of RCA0 is the collection of all recursive subsets of ω, more

formally, the collection

REC = {X ⊆ ω | X is recursive}.

Within RCA0 we can develop a startling amount of mathematics though it has such

weak set comprehension. Basic properties regarding the natural, rational, and real number

systems can be shown. For instance, we define N, the natural numbers, to be the unique

set X such that ∀n (n ∈ X) and can easily verify the following properties.
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Lemma 1. The following are provable in RCA0. With m,n, p ∈ N, we have

(i) 0 +m = m

(ii) 1 +m = m+ 1

(iii) m+ n = n+m (addition is commutative)

(iv) m+ p = n+ p→ m = n

(v) 0 ·m = 0

(vi) 1 ·m = m

(vii) m · n = n ·m (multiplication is commutative)

(viii) m · (n+ p) = m · n+m · p

(ix) (m+ n) · p = m · p+ n · p (the distributive properties)

(x) (m < n ∧ n < p)→ m < p (< is a transitive relation)

(xi) m < n ∨m = n ∨ n < m (the trichotomy of natural numbers)

Note that this is only a sample of the arithmetical properties which can be proven about

N. Each property can be verified using straightforward induction on the alphabetically

last variable appearing in the statement. Some statements require previous statements for

proof. With the addition of several more basic properties of N, we may show the natural

number system is a semiring (a ring whose elements need not have an additive inverse).

Theorem 2. The following in provable in RCA0. The natural number system

N,+, ·, 0, 1, <,=

is a commutative ordered semiring with cancellation.
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For the full list of properties needed to prove Theorem 2 see §II.2 of Simpson [18].

We will assume familiarity with terminology used in basic abstract algebra. An excellent

reference is Dummit and Foote [3].

This is only the beginning of the elementary number theory which may be expressed in

RCA0. We may encode sets, ordered tuples, and finite sequences as single natural numbers

and similarly encode infinite sequences and the Cartesian products as sets. Though the

coding of these objects can be cumbersome, once this is done, we can work with the

objects naturally. For instance, a function f : X → Y may be encoded in the usual

manner using the Cartesian product X × Y . If X and Y are sets of natural numbers and

X × Y = {(i, j) | i ∈ X, j ∈ Y },

then we may define f to be set of all ordered pairs (i, j) so that f(i) = j. This definition

of a function is rather cavalier, so let us ensure that RCA0 asserts the existence of these

sets.

First we define the code for an ordered pair, that is the pairing map defined by

(i, j) = (i+ j)2 + i

where n2 = n · n. We may prove in RCA0 that i and j are both less than the (numerical

code of the) pair (i, j) and that the pairing map is an injection (one-to-one) map from

N × N to N. Note that (i, j) is simply notation, and is not asserting the existence of

N× N which is a consequence of the following definition.

Definition 8 (Cartesian Products). Let X and Y be sets of natural numbers. The
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Cartesian product of X and Y , denoted X × Y is the set of all k such that

∃i ≤ k ∃j ≤ k(i ∈ X ∧ j ∈ Y ∧ (i, j) = k).

This set exists by Σ0
0 comprehension (this formula is Σ0

0 because only bounded quantifiers

appear).

We write A ⊆ B if and only if ∀n (n ∈ A→ n ∈ B).

Definition 9 (Functions). A set f ⊆ X × Y is a function if

∀i ∀j ∀k (((i, j) ∈ f ∧ (i, k) ∈ f)→ j = k) and,

∀i ∃j (i ∈ X → (i, j) ∈ f).

If f is a function we write f : X → Y and let f(i) denote the unique j such that (i, j) ∈ f .

If f : X → Y and g : Y → Z are functions on sets of natural numbers, RCA0 proves

the existence of their composition h = g ◦ f : X → Z.

Within RCA0 we may define k-ary functions (functions whose input is a k-tuple and

whose output is a natural number) since ordered tuples may be encoded as single natural

numbers. These functions are of the form f : Nk → N. We define

Nk = N× N× N× · · · × N× N︸ ︷︷ ︸
k−times

This leads to a very important result, that of primitive recursion.

Theorem 3 (Primitive Recursion, Theorem II.3.4 Simpson [18]). Given f : Nk → N and
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g : Nk+2 → N, RCA0 proves the existence of a unique h : Nk+1 → N defined inductively by

h(0, n1, . . . , nk) = f(n1, . . . , nk),

h(m+ 1, n1, . . . , nk) = g(h(m,n1, . . . , n2),m, n1, . . . , nk).

The proof is omitted but may be found in [18]. This result implies that elementary

function arithmetic may be developed straightforwardly within RCA0. For example, we may

use Theorem 3 to prove the existence of the exponential function f(m,n) = mn defined

inductively by f(m, 0) = 1 and f(m,n+ 1) = f(m,n) ·m. Furthermore, within RCA0 we

can prove certain basic properties including (m1m2)
n = mn

1m
n
2 and mn1mn2 = mn1+n2 . We

can also state and prove fundamental results such as the uniqueness of prime factorization.

Many intricate arguments in elementary number theory, finite combinatorics, and finite

group theory can be formalized within RCA0. This is the case as long as the arguments

in question make no essential use of infinite sets or of induction on complicated formulae.

These finitistic arguments can usually be developed within even weaker systems than

RCA0. We will see that a portion of infinitary mathematics can be developed within RCA0.

As an example we define the integers, rationals and reals after discussing the notion of an

equivalence relation.

We define an equivalence relation as follows. Let ∼ be a relation on N. We call ∼

an equivalence relation if it is reflexive, a ∼ a, and is symmetric, a ∼ b→ b ∼ a and is

transitive, a ∼ b ∧ b ∼ c→ a ∼ c. The equivalence class of an element a is informally the

set {b ∈ N | a ∼ b}. Equivalence classes partition the set they are defined on.

We will now define the ring of integers using equivalence classes of ordered pairs (m,n)

in N × N. Working formally in RCA0, we introduce new relations on N × N which will

encode the structure of Z.
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(m,n) +Z (p, q) = (m+ p, n+ q)

(m,n)−Z (p, q) = (m+ q, n+ p)

(m,n) ·Z (p, q) = (m · p+ n · q,m · q + n · p)

(m,n) <Z (p, q) ↔ m+ q < n+ p

(m,n) =Z (p, q) ↔ m+ q = n+ p

It is clear =Z is an equivalence relation on N × N. We define an integer to be any

element of N× N ⊆ N which is the least element of its equivalence class. “Least” refers

to the ordering of N. We may identify m ∈ N with (m, 0) ∈ Z and (m,n) =Z m− n. We

can prove the set Z of all integers exists within RCA0 and then define +,−, ·, 0, 1, < on Z

accordingly. For instance, for every a, b ∈ Z we define a+ b to be the unique c ∈ Z such

that c =Z a+Z b. From this we can prove Z is an ordered integral domain (a commutative

ring in which the product of any two nonzero elements is nonzero). The proof of the

following theorem can be done in the same manner as Theorem 2, using statements like

those in Lemma 1.

Theorem 4 (Theorem II.4.1 of Simpson [18]). The following is provable in RCA0. The

system

Z,+,−, ·, 0, 1, <

is an ordered integral domain.

In a very similar fashion we may define the field Q of rational numbers. With Z+ the

set of positive integers, we define the following operations and relations on Z× Z+ taking

(a, b), (c, d) ∈ Z× Z+.
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(a, b) +Q (c, d) = (a · d+ b · c, b · d)

(a, b)−Q (c, d) = (a · d− b · c, b · d))

(a, b) ·Q (c, d) = (a · c, b · d))

(a, b) <Q (c, d) ↔ a · d < b · c

(a, b) =Q (c, d) ↔ a · d = b · c

As before =Q is an equivalence relation on Z×Z+. We define a rational number to be

any element of Z× Z+ ⊆ N which is the least element of its equivalence class. The set of

all rational numbers is denoted by Q and we define +,−, ·, 0, 1, < on Q accordingly. We

can prove in RCA0 that Q is an ordered field after defining r/s to be the unique q ∈ Q

such that q · s = r.

The real number system is easy to develop from Q using a slight modification of the

usual definition by Cauchy sequences of rational numbers. We denote the absolute value

of a rational number q ∈ Q by |q| where |q| = q if q ≥ 0, and |q| = −q otherwise.

Definition 10 (Sequences of rational numbers). A sequence of rational numbers is defined

in RCA0 to be a function f : N→ Q. Such a sequence is denoted by 〈qk | k ∈ N〉 where

qk = f(k).

We adapt the usual definition of a Cauchy sequence to define real numbers in RCA0.

Definition 11 (The real number system). A real number is defined in RCA0 to be a

sequence of rational numbers 〈qk | k ∈ N〉 such that

∀k ∀i (|qk − qk+i| ≤ 2−k+1).

Two real numbers 〈qk | k ∈ N〉 and 〈q′k | k ∈ N〉 are said to be equal if ∀k (|qk−q′k| ≤ 2−k+1).
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The letter R is a useful shorthand for the colletion of all rapidly converging Cauchy

sequences of rationals. In models of second order arithmetic, the collection R of all

real numbers is not a member of the set universe (it is a set of sets). However, many

statements about real numbers and analysis can be formulated without making use of the

set of all reals.

It is interesting to consider alternative definitions of a real number. For instance,

we could define a real number to be an equivalence class of rapidly converging Cauchy

sequences or a representative of an equivalence class. Both are erroneous choices for our

goal. Equivalence classes require the language of third order arithmetic and we would

need a strong from of the axiom of choice to select representatives for the reals. In fact,

this form of choice is not available even in full second order arithmetic Z2.

We have only begun to scratch the surface of the mathematics we may formalize in

RCA0. We have already seen that Theorems 2, 3, and 4 are provable in RCA0. From here

we could formulate complete separable metric spaces, continuous real-valued functions,

weak forms of basic results in mathematical logic or countable fields. As an illustration

of the substantial amount of ordinary mathematics we can develop in RCA0 we present

Theorem 5.

Theorem 5. The following are provable in RCA0.

(i) The system Q,+,−, ·, 0, 1, < is an ordered field.

(ii) The uncountability of R. For any sequence of real numbers 〈xn | n ∈ N〉 there exists

a real number y such that ∀n (xn 6= y).

(iii) The intermediate value theorem on continuous real-valued functions. If φ(x) is a

continuous real-valued function on the unit interval 0 ≤ x ≤ 1 and φ(0) < 0 < φ(1),

then there exists c such that 0 < c < 1 and φ(c) = 0.
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(iv) Basics of real linear algebra, including Gaussian Elimination.

(v) Every countable field has an algebraic closure.

(vi) Every countable ordered field has a real closure.

(vii) A soundness theorem. If X is a set of sentences of some countable language L and

there exists a countable model M such that M(φ) = 1 for all φ ∈ X, then X is

consistent.

Each of these statements can be found in Simpson [18]: part (i) is Theorem II.4.2;

part (ii) is Theorem II.4.9; part(iii) is Theorem II.6.6; part (iv) is Exercise II.4.11; part

(v) is Theorem II.9.4; part (vi) is Theorem II.9.7; and part (vii) is Corollary II.8.6.

RCA0 may be viewed as a formal version of computable mathematics. Since RCA0 uses

classical logic as opposed to intuitionistic logic it differs from constructive mathematics,

see Bishop and Bridges [1].

Some, but not all, mathematical theorems can be formulated and proven in RCA0.

This is what makes RCA0 such a wonderful base theory. There is a non-trivial portion

of mathematics which we can formalize within RCA0 yet we will see that many of the

most important theorems require stronger axiom systems. We will also see examples of

theorems which fall outside the usual hierarchy of the big five. These exceptions are of

great interest in reverse mathematics. Ramsey’s theorem for pairs in two colors is one

such exception and will be considered in more detail in § II.7. We conclude this section

by presenting two results which are not provable within RCA0. The first statement is

Example I.8.7 in Simpson [18] and the second follows from work done by Hirst in [13].

Theorem 6. The following are not provable in RCA0.

(i) The maximum principle. Every continuous real-valued function on [0, 1] attains a

supremum.

21



(ii) The Infinite Pigeonhole Principle. If we color each natural number using a finite

number of colors, there exists an infinite set such that every element of that set is

the same color.

II.3 Weak König’s Lemma: WKL0

We have seen that a considerable portion of mathematics may be straightforwardly

formalized in RCA0, but the vast majority of ordinary mathematics remains outside the

comprehension of RCA0. In order to reach more and more mathematics we will need to

strengthen the system we are working in. We will now present WKL0, the next of the

big five subsystems. WKL0 is relatively simple extension of RCA0. The axioms of WKL0

are simply those of RCA0 with weak König’s lemma appended (see Theorem 13(ii) and

Definition 14). The acronym WKL should now be self-explanatory. In order to state any

version of König’s lemma we must first introduce the notion of sequences, initial segments

and trees.

First, N<N is the set of codes for finite sequences of elements of N. Hence, for k ∈ N<N

we have

k = (k0, k1, k2, . . . , k`) with ki ∈ N.

We consider k = (k0, k1, k2, . . . , k`) to be a finite sequence of natural numbers. We

thus consider N<N to be the set of (codes for)1 all finite sequences of natural numbers.

To avoid confusion we use the symbols σ, τ and µ to denote arbitrary sequences. We

also use angle brackets to denote a sequence, e.g., µ = 〈u0, u1, . . . , un〉. If σ, τ ∈ N<N,

1As noted in §II.2, ordered k-tuples (and thus finite sequences) may be encoded as single natural
numbers in Z2. Informally, N<N is the set of all finite sequences of natural numbers but for sake of
formality we must remember we are actually using the encodings of these mathematical objects.
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σ = 〈s0, s1, . . . , sm〉 and τ = 〈t0, t1, . . . , tn〉 we define the concatenation of σ and τ as

σaτ = 〈s0, s1, . . . , sm, t0, t1, . . . , tn〉.

If there exists a sequence µ (possibly null, 〈 〉) such that σaµ = τ , we call σ an initial

segment of τ , denoted by σ ⊆ τ . Finally, the length of σ = 〈s0, s1, . . . , sm〉 is denoted by

lh(σ). In this case lh(σ) = m+ 1. The formal definition of sequences as sets of natural

numbers (from which their code is derived) and the length function can be found in §II.2.6

of Simpson [18].

Definition 12 (Trees). The following is defined within RCA0. A tree is a set T ⊆ N<N

such that any initial segment of a sequence in T is contained in T , that is

∀σ ∀τ ((σ ⊆ τ ∧ τ ∈ T )→ σ ∈ T ).

T is said to be finitely branching if each element in T has only finitely many immediate

successors, that is

∀σ (σ ∈ T → ∃n∀m (σa〈m〉 ∈ T → m < n)).

A path through T is a function g : N→ N such that for all n ∈ N we have g[n] ∈ T where

g[n] is the initial sequence defined by

g[n] = 〈g(0), g(1), . . . , g(n− 1)〉.

We call T ′ a subtree of T if ∀σ (σ ∈ T ′ → σ ∈ T ).

We use {0, 1}<N or 2<N to denote the full binary tree, that is, the set of all (codes for)

finite sequences of 0’s and 1’s. We may now present the full statement of König’s lemma
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and weak König’s lemma.

Definition 13 (Full and Weak König’s Lemma).

(i) König’s Lemma. Every infinite, finitely branching tree T has at least one infinite

path.

(ii) Weak König’s Lemma. Every infinite subtree of 2<N has an infinite path.

It is very important to note the distinction between the full statement of König’s

lemma and weak König’s lemma. In Theorem 13, statement (ii) basically says “big, skinny

trees are tall” while statement (i) says “a big tree with finite levels is tall.” We will see in

Theorem 19 that König’s lemma is equivalent to ACA0 over RCA0.

Though it may be difficult to see how this statement increases the logical strength of

RCA0, the addition of weak König’s lemma adds much to RCA0. It will allow us to assert

the existence of non-recursive sets via what is called Σ0
1 separation (see Theorem 8) and

prove many important nonconstructive theorems of mathematics that do not hold in the

model REC of RCA0. We now formally introduce WKL0.

Definition 14 (The subsystem WKL0). WKL0 is the formal system in the language L2

whose axioms consist of those of RCA0 together with weak König’s lemma.

As an immediate example of the strength of WKL0 we have:

Theorem 7 (Theorem IV.2.3 part 5 of Simpson [18]). The maximum principle: every

continuous real-valued function on [0, 1] attains a supremum, is provable in WKL0.

We recall that the maximum principle is not provable in RCA0 (see Theorem 6 (i)).

The addition of weak König’s lemma remedies this and provides us our first opportunity

for a reversal. It can be shown that, working over RCA0, Theorem 7 implies weak König’s

lemma. Thus, these two statements have a biconditional relationship (if and only if) and
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are as a consequence provably equivalent over RCA0. This is important; if we were to show

Theorem 7 implies any other mathematical statement, we could immediately conclude the

theorem provable in WKL0. Similarly, if any theorem implies Theorem 7, it must imply

weak König’s lemma as well. This will provide a new strategy for finding reversals to

WKL0. It turns out that the maximum principle is not very useful in this endeavor, but

there are provably equivalent characterizations of WKL0 which will be of immense use.

Theorem 8 (Σ0
1 Separation, Lemma IV.4.4 of Simpson [18]). The following are pairwise

equivalent over RCA0.

(i) WKL0.

(ii) (Σ0
1 separation)2 Let ϕ0 and ϕ1 be Σ0

1 formulae in which X does not occur freely. If

¬∃n (ϕ0(n) ∧ ϕ1(n)) then

∃X ∀n ((ϕ0(n)→ n ∈ X) ∧ (ϕ1(n)→ n 6∈ X)).

(iii) If f, g : N→ N are one-to-one with ∀m∀n (f(m) 6= g(n)), then

∃X ∀m (f(m) ∈ X ∧ g(m) 6∈ X).

Both statements (ii) and (iii) assert the existence of sets, and are therefore invaluable.

Statement (ii) is used for many reversals to WKL0. In §III, another tool was employed

to find a reversal to WKL0. In order to prove Theorem 9 which appears on page 52,

the contrapositive of weak König’s lemma was used. The contrapositive states that if a

subtree of 2<N has no infinite path, it must be a finite tree.

2RCA0 suffices to prove Π0
1 separation: For any Π0

1 formulae ψ0 and ψ1 in which Z does not occur
freely,

¬∃n (ψ0(n) ∧ ψ1(n))→ ∃Z ∀n ((ψ0(n)→ n ∈ Z) ∧ (ψ1(n)→ n 6∈ X)).
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Theorem 8 provides us with more tools to find reversals to WKL0 but there are also

more tools that can help us prove theorems in WKL0. One such example is bounded

König’s lemma.

Definition 15 (Bounded Trees). Within RCA0, a tree T ⊆ N<N is said to be bounded

if there exists a function g : N → N such that for all τ ∈ T and m < lh(τ), we have

τ(m) < g(m) where τ(m) is the mth natural number in the sequence τ .

Bounded König’s lemma is the assertion that every bounded infinite tree T ⊆ N<N

has an infinite path.

Theorem 9 (Lemma IV.1.3 of Simpson [18]). Weak König’s lemma is provably equivalent

over RCA0 to bounded König’s lemma.

Because bounded and weak König’s lemma are equivalent, we may use them inter-

changeably in an argument. This proves useful when generalizing results provable in

WKL0 since bounded König’s lemma is itself a generalization of weak König’s lemma.

We now consider the topic of differential equations, namely Peano’s theorem for the

existence of solutions for ordinary differential equations. We use the usual terminology

for differential equations, that is y′ denotes the derivative of some unknown y, a function

of x, and f(x, y) is a bivariate function in x and y. Peano’s theorem says that if f(x, y)

is continuous in a neighborhood about the origin, then the initial value problem

y′ = f(x, y), y(0) = 0

has a solution y = φ(x) which is continuously differentiable in some neighborhood of

x = 0. This theorem may be formalized and proven in WKL0 as shown by Simpson in [18].

Theorem 10 (Peano’s theorem in WKL0, Theorem IV.8.1 of Simpson [18]). The following

is provable in WKL0. Let f(x, y) be a continuous real-valued function on the rectangle
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−a ≤ x ≤ a,−b ≤ y ≤ b where a, b > 0. Then the initial value problem

dy

dx
= f(x, y), y(0) = 0

has a continuously differentiable solution y = φ(x) on the interval −α ≤ x ≤ α where

α = min

(
a,

b

M

)
and

M = max
{
|f(x, y)|

∣∣ − a ≤ x ≤ a,−b ≤ y ≤ b
}
.

Using Σ0
1 separation we may show this statement is equivalent to WKL0 over RCA0.

This result is of major historical significance. The long standing proof of Peano’s theorem

relied on what is known as the Ascoli lemma. In [19], Simpson showed Ascoli’s lemma

was not needed and that Peano’s theorem was in fact provably weaker than the Ascoli

lemma. It turns out that while WKL0 proves Peano’s theorem, WKL0 cannot prove the

Ascoli lemma. We will see in Theorem 19 that the Ascoli lemma is equivalent to ACA0

over RCA0.

The addition of weak Konig’s lemma to RCA0 increases the logical strength of RCA0 a

great deal. Surprisingly, WKL0 and RCA0 prove exactly the same first order formulas. In

the terminology of Simpson [18], their first order part is Σ0
1-PA, which is Peano arithmetic

with induction restricted to Σ0
1 formulas. More information about Peano arithmetic

appears in the next section. When we regard the two systems in the second order setting

however, WKL0 is much stronger and can prove many classical mathematical results that

RCA0 cannot. To observe directly that RCA0 is strictly weaker than WKL0 we take note

that REC (the minimum ω-model of RCA0) does not satisfy weak König’s lemma and as

a result is not an ω-model of WKL0. Thus, RCA0 does not prove weak König’s lemma.

This implies that RCA0 is a proper (strictly weaker) subsystem of WKL0.
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We have already seen the maximum principle from Theorem 7, statements (ii) and

(iii) of Theorem 8, Theorem 10 and bounded König’s lemma as examples of theorems for

which the full strength of WKL0 is needed. Each of these theorems are provably equivalent

to WKL0 over RCA0. We now present Theorem 11 as further example of the mathematics

which may be formalized within WKL0.

Theorem 11. One can prove the following statements equivalent to WKL0 over RCA0.

(i) The Heine/Borel Theorem for [0,1]: Given sequences of real numbers ci, di, i ∈ N, if

∀x (0 ≤ x ≤ 1→ ∃i (ci < x < di)),

then

∃n∀x (0 ≤ x ≤ 1→ ∃i ≤ n(ci < x < di)).

(ii) The Heine/Borel Theorem for compact metric spaces.

(iii) Every continuous real-valued function on [0, 1] is bounded.

(iv) For every continuous function φ(x) on a closed bounded interval a ≤ x ≤ b, the

Riemann integral

∫ b

a

φ(x)dx exists and is finite.

(v) Gödel’s completeness theorem: Every countable consistent set X of sentences has a

model, i.e., there exists a countable model M such that ∀σ (σ ∈ X →M(σ) = 1).

(vi) Gödel’s compactness theorem: If each finite subset of X has a model then X has a

model.

(vii) Every countable commutative ring has a prime ideal.

(viii) Every countable field has a unique algebraic closure.

28



(ix) Brouwer’s fixed point theorem: Every uniformly continuous function φ : [0, 1]n →

[0, 1]n has a fixed point.

Each of these statements can be found in Simpson [18]: part (i) is Lemma IV.1.1; part

(ii) is Theorem IV.1.5; part (iii) is part 3 of Theorem IV.2.3; part (iv) is Theorem IV.2.7;

parts (v) and (vi) are parts 3 and 4 Theorem IV.3.3; part (vii) is part 2 of Theorem

IV.6.4; part (viii) is Theorem IV.5.2; and part (ix) is Theorem IV.7.6.

We conclude with several remarks on Theorem 11. We previously discussed the

maximum principle and WKL0. Here we see WKL0 proves (iii) and (iv) which are

intuitively stronger statements than the maximum principle. Theorem 5 (viii) asserts

the existence of an algebraic closure for every countable field, which is provable in RCA0.

Theorem 11 (viii) asserts that this algebraic closure is unique. These examples exemplify

how WKL0 is strictly stronger than RCA0. Statement (v) is generalized to (vi) via use of

bounded König’s lemma.

II.4 Arithmetical Comprehension: ACA0

The next subsystem we will be concerned with is ACA0, which adds comprehension

for arithmetically definable sets to RCA0. The acronym ACA stands for “arithmetical

comprehension axiom.” To discuss arithmetically definable sets we must first define

arithmetical formulae.

Definition 16 (Arithemetical Formulae). If ϕ is a formula of the language L2, we say

that ϕ is arithmetical if and only if ϕ contains no set quantifiers. Note that ϕ may contain

free set variables.

A set X then is arithmetically definable if and only if there exists some ϕ such that ϕ

is arithmetical and

∀n (n ∈ X ↔ ϕ(n)).
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The formal definition of ACA0 is relatively simple.

Definition 17 (The subsystem ACA0). The axioms of ACA0 are the basic axioms and

induction axiom from Definition 2 along with comprehension axioms

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any arithmetical formula in which X does not occur freely.

A model of ACA0 is any L2-structure

M = (M ′,SM ,+M , ·M , 0M , 1M , <M)

that satisfies the arithmetical comprehension scheme, that is, SM contains all subsets of

M ′ which are arithmetically definable with parameters from M ′ ∪ SM .

Within ACA0, we have as a consequence of arithmetical comprehension and the

induction axiom, the arithmetical induction scheme:

(ϕ(0) ∧ ∀n (ϕ(n)→ ϕ(n+ 1)))→ ∀n ϕ(n)

where ϕ is any arithmetical formula.

It is obvious that the addition of arithmetical comprehension gives ACA0 significantly

more set comprehension than RCA0 but we see that much more induction is available

in ACA0 as well due to arithmetical comprehension. It seems intuitive that ACA0 is a

stronger subsystem than RCA0 but to verify this we simply note that the model REC of

RCA0 does not contain every arithmetical set and therefore cannot be a model of ACA0.

Hence, ACA0 can not be proven in RCA0. It can also be shown that ACA0 is stronger than

WKL0.
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There is a very close relationship between ACA0 and first order arithmetic Z1. If

we define L1 to be the language of first order arithmetic (i.e. L2 with the set variables

omitted), then we say first order arithmetic is the formal system Z1 whose language is L1

and whose axioms are the basic axioms from Definition 2 with the first order induction

scheme (induction on first order formulae of L1). First order arithmetic is often referred

to as Peano arithmetic, PA. It can be shown that for any model of ACA0, say

(M ′,SM ,+M , ·M , 0M , 1M , <M),

its first order part

(M ′,+M , ·M , 0M , 1M , <M)

is a model of Z1. Conversely, we may also take any countable model of Z1, say

(M ′,+M , ·M , 0M , 1M , <M),

and find an appropriate SM ⊆ P(M ′) (the set of all subsets of M ′) such that

(M ′,SM ,+M , ·M , 0M , 1M , <M)

is a model of ACA0. This implies that for any L1-sentence σ, σ is a theorem of (provable

in a model of) ACA0 if and only if σ is a theorem of Z1. We say then that ACA0 is a

conservative extension of first order arithmetic, i.e., the first order part of ACA0 is Z1.

This property of ACA0 aids us in studying what is provable in PA. For instance, proving

Fermat’s last theorem within ACA0 would show it is a theorem of Peano arithmetic. This

has not been done but would be a quite remarkable result.

We discussed in §II.3 that WKL0 is equivalent to Σ0
1 separation and that this equivalence

31



is of great use in finding reversals to WKL0. This was presented in Theorem 8. In a

similar fashion, there are statements provably equivalent to ACA0 which in many cases

make finding a reversal easier. Two of these are given in the following theorem.

Theorem 12 (Lemma III.1.3 of Simpson [18]). The following are pairwise equivalent

over RCA0.

(i) ACA0

(ii) Σ0
1 comprehension, i.e., ∃X ∀n (n ∈ X ↔ ϕ(n)) restricted to Σ0

1 formulas ϕ(n) in

which X does not occur freely.

(iii) For all one-to-one functions f : N → N there exists a set X ⊆ N such that

∀n (n ∈ X ↔ ∃m (f(m) = n)), that is, X is the range of f .

The implications (i) → (ii) and (i) → (iii) are immediate by use of arithmetical

comprehension. For (ii)→ (i), we note that any arithmetical formula is equivalent to a Σ0
k

formula for some k ∈ ω. It can be shown by induction that Σ0
1 comprehension implies Σ0

k

comprehension for any k ∈ ω. Hence, (ii) → (i). (iii) → (i) is not as simple and requires

a lemma in RCA0 regarding recursive functions and their ranges, see [18].

ACA0 is sufficiently strong to prove several results concerning countable abelian groups,

countable commutative rings, and countable vector spaces. RCA0 is sufficient to define these

objects but the definitions are fairly technical. As example of this we define countable

abelian groups and omit the definitions of countable commutative rings and countable

vector spaces.

Definition 18 (Countable Abelian Groups within RCA0). Within RCA0, we define a

countable Abelian group A to be a set A′ ⊆ N together with a binary operation +A :

A′ × A′ → A′, a unary operation −A : A′ → A′, and a distinguished element 0A ∈ A′

such that the system A′,+A,−A, 0A obeys the usual Abelian group axioms of closure,
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identity, inverses, associativity, and commutativity. We use primitive recursion to define

f : N× A′ → A′ by f(0, a) = 0, f(n+ 1, a) = f(n, a) + a and set na = f(n, a). Thus

na = a+ a+ · · ·+ a︸ ︷︷ ︸
n-times

.

The definitions of countable commutative rings and countable vector spaces are

set up similarly. For example, to define a ring R we will need two binary operations

+R, ·R : R′ × R′ → R′ and two distinguished elements 0R, 1R ∈ R′ for obvious reasons.

We can define a countable vector space V by taking an abelian group V ′,+V ,−V , 0V and

a countable field K (a special case of the countable commutative ring) and defining a

function ·V : K ′ × V ′ → V ′ that models scalar multiplication.

For our first example of an algebraic result within ACA0 we consider the torsion

elements of a countable Abelian group A. We call any element of a countable Abelian

group A a torsion element if it is of finite order, that is a ∈ A is a torsion element if

∃n (n ≥ 1 ∧ na = 0).

Theorem 13 (Torsion Subgroup, Theorem III.6.2 of Simpson [18]). ACA0 is equivalent

over RCA0 to the assertion that every countable Abelian group A has a subgroup consisting

of the torsion elements.

To prove the assertion of a torsion subgroup from ACA0 is fairly simple. We may use

arithmetical comprehension to form the set T of torsion elements in A. By letting ϕ(m)

be the formula

m ∈ A ∧ ∃n (n ≥ 1 ∧ nm = 0)

we obtain T from arithmetical comprehension, i.e.,

∃T ∀m (m ∈ T ↔ ϕ(m)).
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From here it is not difficult to verify T is a subgroup of A. The reversal is a degree

more difficult. In view of Theorem 12, we need only consider an arbitrary injection

f : N → N and use the existence of torsion subgroups to compute the range of f . To

do this though we need to discuss T in terms of its generators and relations which are

notions not discussed in this work.

Theorem 14 gives example of two more algebraic results provable in and equivalent

to ACA0. We say an ideal M of a ring R is maximal if the quotient ring R/M is a field.

(See Dummit and Foote [3] for a discussion on the algebraic structures mentioned in this

work.)

Theorem 14. The following assertions are pairwise equivalent over RCA0.

(i) ACA0

(ii) Every countable commutative ring has a maximal ideal.

(iii) Every countable vector space over a countable field has a basis.

Part (ii) of Theorem 14 is part 2 of Theorem III.5.5 of Simpson [18] while part (iii) is

part 2 of Theorem III.4.3.

We turn now from countable algebraic structures to infinitary combinatorics. König’s

lemma, as stated in Theorem 13(i), is a basic result equivalent to ACA0 over RCA0. König’s

lemma though, is a very general statement about some finitely branching infinite tree

T ⊆ N<N. Note that there is no upper bound on the number of immediate successors

any node in T can have. We may place a bound on this number and yield results which

remain equivalent to ACA0 as illustrated by the following theorem.

Theorem 15 (Theorem III.7.2 part 3 of Simpson [18]). ACA0 is provably equivalent over

RCA0 to König’s lemma restricted to tress T ⊆ N<N such that ∀σ ∈ T , σ has at most two

immediate successors in T .
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This reversal is done via the equivalence of ACA0 to statement Theorem 12(iii) as in

[18]. This statement is similar to weak König’s lemma (Theorem 13(ii)) but note that

weak König’s lemma not only places a bound on the number of branches attached to

each node, but also bounds the labels which can be used for each node. It is this further

restriction which allows for only 0 and 1 labels that causes weak König’s lemma to be

weaker than ACA0.

Ramsey’s theorem is another basic result of infinitary combinatorics that has been

studied in reverse mathematics. Before we can state the theorem we need to introduce a

small bit of notation (defined in RCA0). For any X ⊆ N and ` ∈ N, we define [X]` to be

the set of all increasing sequences of length ` in X. RCA0 proves that for each X and `,

[X]` exists.

Theorem 16 (Ramsey’s theorem for exponent `). Ramsey’s theorem for exponent ` or

RT(`) states that for all ` ∈ N and all f : [N]` → {0, 1, . . . , k − 1}, there exist c < k and

an infinite set X ⊆ N such that f(m1, . . . ,m`) = c for all 〈m1, . . . ,m`〉 ∈ [X]`.

There are many ways to state and interpret Ramsey’s theorem. Here we may think of

coloring all of the ordered (increasing) `-tuples of natural numbers with k many colors.

Ramsey’s theorem guarantees the existence of an infinite set X such that every `-tuple

within [X]` has the the same color c.

ACA0 suffices to prove RT(`) for every ` ∈ ω. This is implied by the following lemma.

Lemma 17 (Lemma III.7.4 of Simpson [18]). ACA0 proves RT(0) and

∀` (RT(`)→ (RT(`+ 1)).

Proving RT(0) is trivial. If we assume RT(`) to induct on ` we may prove RT(`+ 1) by

a careful application of König’s lemma as in [18]. We cannot carry out Ramsey’s original
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proof within ACA0 though it is relatively simple.

Considering the reversal yields interesting results. Similar to König’s lemma for trees,

cases of Ramsey’s theorem have different logical strength depending on the the structure

of the sequences in question, namely, their length. We can obtain the following reversal

by use of Theorem 12(ii).

Lemma 18 (Lemma III.7.5 of Simpson [18]). It is provable in RCA0 that RT(3) implies

ACA0.

We formalize the equivalence between ACA0 and Ramsey’s theorem below in Theorem

19(i). The cases where ` ≤ 2 are interesting exceptions to the usual results in reverse

mathematics. RT(1) and RT(2) are both independent of the big five subsystems as we will

see in §II.7. It is interesting to note the statement ∀kRT(k) is not provable in ACA0, but

instead is provable in the system of ACA+
0 which appends an existence axiom for ω-jumps.

We conclude our treatment of ACA0 with Theorem 19. Statement (vii), the Ascoli

lemma, was remarked on in §II.3 with respect to Peano’s theorem for ordinary differential

equations. Note that statement (vi), the Bolzano/Weierstraß theorem, is the special case

of (vii) in which Â and B̂ are closed bounded intervals and each fn is a constant function.

Theorem 19. One can prove the following statements equivalent to ACA0 over RCA0.

(i) RT(`) for ` ≥ 3.

(ii) Every countable integral domain has a maximal ideal.

(iii) Every countable field has a strong algebraic closure.

(iv) For every pair of countable fields K ⊆ L there exists a transcendence base for L

over K.
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(v) Every countable vector space over an infinite countable field either is finite dimen-

sional or contains an infinite linearly independent set.

(vi) The Bolzano/Weierstraß theorem: Every bounded sequence of real numbers contains

a convergent subsequence.

(vii) The Ascoli lemma: Let Â and B̂ be compact metric spaces. If 〈fn : n ∈ N〉 is a

sequence of continuous functions fn : Â→ B̂ then there exists a uniformly convergent

subsequence 〈fnk
: k ∈ N〉 where for every k, nk < nk+1.

Each of the these statements can be found in Simpson [18]: part (i) is Theorem III.7.6;

part (ii) is Theorem III.5.5 part 3; part (iii) is Theorem III.3.2 part 2; part (iv) is Theorem

III.4.6 part 2; part (v) is Theorem III.4.4 part 3; parts (vi) and (vii) are Theorem III.2.9

parts 2 and 3.

II.5 Arithmetical Transfinite Comprehension: ATR0

ATR0 is by far the most technical subsystem of the big five to define. ATR stands

for “arithmetical transfinite recursion.” This is because ATR0 allows for the iteration of

arithmetical comprehension a transfinite number of times. We use the term transfinite

to designate orderings that include a copy of N as an initial segment. ATR0 can be

characterized as the weakest system in which one can develop a decent theory of countable

well orderings. ATR0 is a vastly stronger system than ACA0 as will be evident from the

set comprehension axiom given in its defintion, Definition 20.

To define the system we will first need to formalize the notion of a countable well

ordering. These are the transfinite objects we will iterate arithmetical comprehension

along. Recall that in §II.2 we encoded N× N as a subset of N via the pairing map

(i, j) = (i+ j)2 + i.
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This proved vital in the construction of number systems within RCA0 and with many

other coding endeavors including functions and sequences. Identifying N× N this way

allows us to discuss binary relations on N as subsets of N× N. We say a set X ⊆ N× N

is reflexive if for every i and j we have that

(i, j) ∈ X → ((i, i) ∈ X ∧ (j, j) ∈ X).

If X is reflexive then we write field(X) = {i | (i, i) ∈ X} We write

i ≤X j ↔ (i, j) ∈ X, and

i <X j ↔ ((i, j) ∈ X ∧ (j, i) 6∈ X)

for reasons which will become obvious after Definition 19.

Definition 19 (Countable Well Orderings). The following definitions are made within

RCA0. Let X ⊆ N be reflexive.

(i) We say that X is well founded if it has no infinite descending sequence, that is, there

is no f : N→ field(X) such that f(n+ 1) <X f(n) for all n ∈ N. We let WF(X) be

the formula that states X is well founded.

(ii) We say that X is a countable linear ordering if it is a reflexive linear ordering of its

field, that is,

∀i ∀j ∀k ((i ≤X j ∧ j ≤X k)→ i ≤X k),

∀i ∀j ((i ≤X j ∧ j ≤X i)→ i = j),

∀i ∀j (i, j ∈ field(X)→ (i ≤X j ∨ j ≤X i)).

We let LO(X) be the formula that states X is a countable linear ordering.
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(iii) We say that X is a countable well ordering it is simultaneously a countable linear

ordering and well founded. We let WO(X) be the formula that states X is a

countable well ordering.

Now we can define arithmetical transfinite recursion. Suppose we have some arith-

metical formula θ(n, Y ) and a countable well ordering X. We wish to associate a set Yj

to each j ∈ field(X). We do this by defining the Yj’s via transfinite recursion along X.

Assuming that Yi has been defined for all i <X j, we define

Y j = {(m, i) | i <X j ∧m ∈ Yi}

and

Yj = {n | θ(n, Y j)}.

Intuitively, Y j is the cumulative result of comprehension by θ applied repeatedly along X

up to j. Yj is then the result of applying θ one more time.

Formally, we define Hθ(X, Y ) to be the formula which states LO(X) and that Y

is the set of all pairs (n, j) such that for every j ∈ field(X) we have θ(n, Y j) where

Y j = {(m, i) | i <X j ∧ (m, i) ∈ Y }. Basically, Hθ(X, Y ) says that Y records the entire

computation of iterating θ along each j ∈ field(X).

We note that ACA0 suffices to prove that if X is a countable well ordering then there

is at most one Y such that Hθ(X, Y ) before presenting the formal definition of ATR0.

Definition 20 (The subsystem ATR0). ATR0 is the formal system in the language L2

whose axioms consist of those of ACA0 plus all instances of

∀X (WO(X)→ ∃Y Hθ(X, Y ))

where θ is arithmetical.
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We have seen that defining the system ATR0 is no menial task. In order to avoid being

burdened by the technical details we next present an expression equivalent to ATR0, that

is Σ1
1 seperation. We saw in §II.3 that WKL0 was equivalent to Σ0

1 seperation, here we

have Theorem 20.

Theorem 20 (Theorem V.5.1 of Simpson [18]). The following are equivalent over RCA0.

(i) Arithmetical transfinite recursion.

(ii) The Σ1
1 separation principle: For any Σ1

1 formulas ϕ1(n) and ϕ0(n) in which Z ⊆ N

does not occur freely, we have

¬∃n (ϕ1(n) ∧ ϕ0(n))→

∃Z ∀n ((ϕ1(n)→ n ∈ Z) ∧ (ϕ0(n)→ n 6∈ Z)).

It is known that ATR0 lies strictly between ACA0 and Π1
1 − CA0. We can think of this

as an analogous postion to WKL0 between RCA0 and ACA0 in terms of logical strength.

We should note though that there is a vast jump in strength when moving from the

principle of Σ0
1 seperation to Σ1

1 seperation.

Just as with WKL0, Theorem 20(ii) is used in many reversals to ATR0. Many theorems

provable in ATR0 mention sets which are usually defined by arithmetical transfinite

recursion. Proving reversals of these theorems shows that the use of transfinite recursion

is logically necessary. For example, transfinite recursion is necessary in the construction

of comparison maps for well orderings, as shown by the following theorem.

Theorem 21 (Friedman, appears as Theorem V.6.8 in Simpson [18].). RCA0 can prove

the following are equivalent:

(i) ATR0
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(ii) Comparability of well orderings: If WO(X) and WO(Y ), then there is an order

preserving bijection of X onto an initial segment of Y or of Y onto an initial segment

of X.

We finish with a short discussion on trees in ATR0, the following results will parallel

results in §II.6.

Theorem 22 (Theorem V.5.2 part 3 of Simpson [18]). The following are equivalent over

RCA0.

(i) Arithmetical transfinite recursion.

(ii) For any sequence of trees 〈Ti | i ∈ N〉, Ti ⊆ N<N, if for every i, Ti has at most one

path then

∃Z ∀i (i ∈ Z ↔ Ti has a path.).

Note the restriction on each Ti, we will see in Theorem 25 that Π1
1 − CA0 is equivalent

to the same assertion with no restriction on the number of paths each Ti can have.

Definition 21 (Perfect Trees). Within RCA0, a finite sequence τ ∈ N<N is said to be an

extension of σ ∈ N<N if σ ⊆ τ , that is,

lh(σ) ≤ lh(τ) ∧ ∀i (i < lh(σ)→ σ(i) = τ(i)).

Two finite sequences τ1, τ2 ∈ N<N are said to be incompatible if neither is an extension of

the other, that is,

∃i (i < min(lh(τ1), lh(τ2)) ∧ τ1(i) 6= τ2(i)).

A tree T ⊆ N<N is said to be perfect if each element of T has a pair of incompatible
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extensions in T , that is,

(∀σ ∈ T )(∃τ 1, τ2 ∈ T )(σ ⊆ τ1 ∧ σ ⊆ τ2 ∧ τ1, τ2 are incompatible.).

The statements in the following theorem are equivalent to what is known as the perfect

set theorem. We will see in §II.6 that a similar, yet more specific theorem is equivalent to

Π1
1 − CA0.

Theorem 23 (Theorem V.5.5 part 4 of Simpson [18]). The following are equivalent over

RCA0.

(i) Arithmetical transfinite recursion.

(ii) For every tree T ⊆ N<N, if T has uncountably many paths, then T has a nonempty

perfect subtree.

We conclude this section with Theorem 24.

Theorem 24. One can prove the following statements equivalent to ATR0 over RCA0.

(i) Any two well orderings are comparable, i.e.,

∀X ∀Y ((WO(X) ∧WO(Y ))→ (|X| ≤ |Y | ∨ |Y | ≤ |X|)).

(ii) The Σ1
1 bounding principle: For any Σ1

1 formula ϕ(X), if ∀X (ϕ(X) → WO(X))

then

∃Y (WO(Y ) ∧ ∀X (ϕ(X)→ |X| < |Y |)).

(iii) For every tree T ⊆ 2<N, if T has uncountably many paths, then T has a nonempty

perfect subtree.
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(iv) The perfect set theorem: Every uncountable analytic set has a perfect subset.

(v) Every countable reduced Abelian p-group has an Ulm resolution.

(vi) Ulm’s theorem: Any two countable reduced Abelian p-groups which have the same

Ulm invariants are isomorphic.

Each of these statements can be found in Simpson [18]: part (i) is Thereom V.6.8;

part (ii) follows from part (i) and Lemma V.6.2; part (iii) is Theorem V.5.5 part 3; part

(iv) is Theorem V.5.5 part 2; part (v) is Theorem V.7.3 part 2; and part (vi) is Theorem

V.7.1.

II.6 Π1
1 Comprehension: Π1

1 − CA0

The last and strongest of the big five subsystems of Z2 is Π1
1 − CA0. We have already

seen that the system ATR0 is very strong. Π1
1 − CA0 is even stronger, yet still very much

weaker than full second order arithmetic. Most theorems that need the set comprehension

afforded in Π1
1 − CA0 are extremely sophisticated and exceed the scope of this work.

Because of this our treatment of Π1
1 − CA0 is quite brief. The proof of each result can be

found in [18].

Relative to ATR0 this system is extremely simple to define. Paralleling the definition

of ACA0, we have Definition 22.

Definition 22 (The subsystem Π1
1−CA0). Π1

1−CA0 is the formal system in the language

L2 whose axioms consist of the basic axioms and the induction axiom in Definition 2

together with comprehension axioms

∃X ∀n (n ∈ X ↔ ϕ(n))

where ϕ(n) is any Π1
1 formula in which X does not occur freely.
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Theorem 25 (Theorem VI.1.1 of Simpson [18]). The following are equivalent over RCA0.

(i) Π1
1 comprehension.

(ii) For any sequence of trees 〈Ti | i ∈ N〉 with Ti ⊆ N<N, there exists a set X such that

∀i (i ∈ X ↔ Ti has a path.).

We see that Theorem 25(ii) is essentially a generalization of Theorem 22(ii). Recall

from Theorem 23 that ATR0 is equivalent to the assertion that any tree with uncountably

many paths must have a perfect subtree. The following theorem presents an analog for

Π1
1 − CA0. We will see that not only does Π1

1 − CA0 guarantee the existence of a perfect

subtree, it guarantees the existence of specific perfect subtrees.

For a tree T ⊆ N<N, we define the perfect kernel of T in RCA0 to be the union of all

of the perfect subtrees of T , provided this union exists. Note that the perfect kernel of T

is a perfect tree (if it exists) and in fact, is the unique largest perfect subtree of T .

Theorem 26 (Theorem VI.1.3 parts 1, 2 and 4 of Simpson [18]). The following are

equivalent over RCA0.

(i) Arithmetical transfinite recursion.

(ii) For any tree T ⊆ N<N, the perfect kernel of T exists.

(iii) For any tree T ⊆ N<N, there is a perfect subtree P ⊆ T such that the set of paths

through T which are not paths through P is countable.

Note that not only are these perfect subtrees very specific subtrees but they are

subtrees of a very general tree T . Recall that in ATR0, the existence of a perfect subtree

is only guaranteed for trees with uncountable many paths. Here Π1
1 − CA0 guarantees
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the existence of the unique largest perfect subtree of T for any T ⊆ N<N as well as

the existence of the specific subtree P mentioned in statement (iii). We will see in the

following theorem that these statements hold for trees T ⊆ 2<N as well.

Simpson uses theorems 25 and 26 to prove the equivalence of Π1
1 − CA0 to the famous

Cantor/Bendixson theorem in [18]. We conclude our treatment of Π1
1−CA0 with Theorem

27 in which the Cantor/Bendixon theorem and a number of other equivalent statements

to Π1
1 − CA0 are presented.

Theorem 27. The following are provably equivalent to Π1
1 − CA0 over RCA0.

(i) The Cantor/Bendixson theorem for NN: Every closed set in NN is the union of a

perfect closed set and a countable set

(ii) The Cantor/Bendixson theorem for 2N.

(iii) For any tree T ⊆ 2<N, the perfect kernel of T exists.

(iv) For any tree T ⊆ 2<N, there is a perfect subtree P ⊆ T such that the set of paths

through T which are not paths through P is countable.

(v) Every countable Abelian group is the direct sum of a divisible group and a reduced

group.

Each of these statements can be found in Simpson [18]: parts (i) and (ii) are Theorem

VI.1.6 pars 2 and 3; parts (iii) and (iv) are Theorem VI.1.3 parts 3 and 5; and part (v) is

Theorem VI.4.1 part 2.

II.7 Exceptions

We have seen that a startling amount of mathematics is either provable in RCA0 or

provably equivalent to one of the stronger subsystems in the big five. There are theorems
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that fall outside this hierarchy though. We will consider one such example, Ramsey’s

theorem for pairs in two colors or RT(2,2). We define a complete graph to be a graph

such that there is an edge between every two vertices.

Theorem 28 (RT(2,2)). Given an infinite complete graph, if we color each edge with

one of two colors then there exists an infinite subgraph such that each edge is of the same

color.

In 1962, Specker showed that RCA0 cannot prove RT(2,2) [20]. This begged the

question if RT(2,2) was provable in a higher system. Jockusch’s work in 1972 [15] verified

that WKL0 cannot prove RT(2,2) but that ACA0 can. The remaining question was the

reversal to ACA0. Over two decades later, in 1995 Slaman and Seetapun showed that

RT(2,2) does not prove ACA0 [17]. This result was remarkable as it solidified the fact that

RT(2,2) is not provably equivalent to any of the big five systems in reverse mathematics.

One question was left, that is, whether WKL0 was provable from RT(2,2) or not. It was

not until very recently, in 2012, that Liu showed WKL0 is not provable from RT(2,2) [16].

Thanks to the work over the last 50 years, we now know that RT(2,2) lies between

ACA0 and RCA0 in terms of its logical strength but is incomparable with WKL0. We

summarize these relationships in the following figure.

ACA0

RT(2,2) WKL0

RCA0

46



There are many other theorems which cannot be classified using the usual hierarchy in

reverse mathematics. For example, Hirschfeldt and Shore [12] give examples of principles

weaker than RT(2,2) that fit this category.

Another such result, the infinite pigeonhole principle (Theorem 6(ii)), was shown to be

equivalent to BΣ2, a bounding scheme for Σ0
2 formula by Hirst in [13]. This result implies

that the infinite pigeonhole principle lies between ACA0 and RCA0 and is incomparable to

WKL0.

III Original Results

We conclude this work with the original article Reverse mathematics and marriage problems

with unique solutions written by Hirst and Hughes. The article has been submitted to

the Archive for Mathematical Logic. The work was done during the summer and fall of

2013. The reverse mathematics done in this paper served as the inspiration for this thesis.

A combined bibliography for the paper and this introduction appears as the last section.
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Reverse mathematics and marriage problems with
unique solutions

Jeffry L. Hirst and Noah A. Hughes3

January 28, 2014

Abstract

We analyze the logical strength of theorems on marriage problems with
unique solutions using the techniques of reverse mathematics, restricting
our attention to problems in which each boy knows only finitely many
girls. In general, these marriage theorems assert that if a marriage
problem has a unique solution then there is a way to enumerate the
boys so that for every m, the first m boys know exactly m girls. The
strength of each theorem depends on whether the underlying marriage
problem is finite, infinite, or bounded.

Our goal is to analyze the logical strength of some marriage theorems using the
framework of reverse mathematics. The subsystems of second order arithmetic used here
are RCA0, which includes comprehension for recursive (also called computable) sets of
natural numbers, WKL0, which appends a weak form of König’s Lemma for trees, and
ACA0, which appends comprehension for arithmetically definable sets. Simpson’s book
[18] provides detailed axiomatizations of the subsystems and extensive development of
the program of reverse mathematics.

We use the standard anthropocentric terminology for marriage theorems. A marriage
problem consists of a set B of boys, a set G of girls, and a relation R ⊂ B × G where
(b, g) ∈ R means “b knows g.” A solution of the marriage problem is an injection
f : B → G such that for all b ∈ B, (b, f(b)) ∈ R. Informally, f assigns a spouse to each
boy, chosen from among his acquaintances and avoiding polygamy. In general, marriage

3Authors’ address: Department of Mathematical Sciences, Appalachian State University, Boone, NC
28608
Corresponding author: Jeffry L. Hirst jlh@math.appstate.edu TEL: 1-828-262-2861 FAX: 1-828-265-
8617
Keywords: reverse mathematics, combinatorics, marriage theorems, transversal, SDR, unique matching
MSC Classification: Primary: 03B30, 03F35 Secondary: 05D15, 05C70
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theorems provide necessary and sufficient conditions for the existence of solutions or, in
our case, for the existence of unique solutions. These sorts of results are often expressed
using other terminology such as transversals, systems of distinct representatives (SDRs),
and matchings in bipartite graphs.

As a notational convenience, we use some set theoretic notation as abbreviations
for more complicated formulas of second order arithmetic. If b ∈ B, we write G(b) for
{g ∈ G | (b, g) ∈ R}. In the marriage problems for this paper each boy knows at most
finitely many girls, so for each b, RCA0 can prove the existence of G(b). Although G(b)
looks like function notation, it is not. In general, RCA0 can prove the existence of a
function uniformly mapping each boy to (the integer code for) the finite set G(b) if and
only if the marriage theorem is bounded, as defined after Theorem 2. We further abuse
this notation by using formulas like g ∈ G(B0) to abbreviate ∃b ∈ B0((b, g) ∈ R). In
settings that address more than one marriage problem, we write GM(B0) to denote girls
known by boys in B0 in the marriage problem M . Cardinality notation like |X| ≤ |Y |
abbreviates the assertion that there is an injection from X into Y . The formula |X| < |Y |
abbreviates the conjunction of |X| ≤ |Y | and |Y | 6≤ |X|. For finite sets, RCA0 can prove
many familiar statements about cardinality, for example, if X is finite and y /∈ X then
|X| < |X ∪ {y}|.

Given a marriage problem M = (B,G,R) with a solution f , for any B0 ⊂ B the
restriction of f is an injection of B0 into G(B0). Consequently, RCA0 proves that if M
has a solution then |B0| ≤ |G(B0)| for every B0 ⊂ B. Philip Hall [8] proved the converse
for finite marriage problems. The following theorem shows that Philip Hall’s result can
be formalized and proved in RCA0 and appears as Theorem 2.1 of Hirst [14].

Theorem 1. (RCA0) If M = (B,G,R) is a finite marriage problem satisfying |B0| ≤
|G(B0)| for every B0 ⊂ B, then M has a solution.

Marshall Hall, Jr. [7] extended Philip Hall’s theorem to infinite marriage problems.
The following theorem shows that his result is equivalent to ACA0 and appears as Theorem
2.2 of Hirst [14]. Marriage problems in which boys are allowed to know infinitely many
girls are considerably more complex and not considered in this paper.

Theorem 2. (RCA0) The following are equivalent:

1. ACA0.

2. If M = (B,G,R) is a marriage problem such that each boy knows only finitely many
girls and |B0| ≤ |G(B0)| for every finite B0 ⊂ B, then M has a solution.

Suppose that M = (B,G,R) is a marriage problem in which B and G are subsets
of N. We say that M is bounded if there is a function h : B → G such that for each
b ∈ B, G(b) ⊆ {0, 1, . . . , h(b)}. The function h acts as a uniform bound on the girls that
each boy knows, and also insures that each boy knows only finitely many girls. Given
such a bounding function, recursive comprehension proves the existence of the function
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mapping each b to (the code for) the finite set G(b). As illustrated by the following
theorem, bounded marriage theorems are often weaker than their unbounded analogs.
The following appears as Theorem 2.3 of Hirst [14].

Theorem 3. (RCA0) The following are equivalent:

1. WKL0.

2. If M = (B,G,R) is a bounded marriage problem such that |B0| ≤ |G(B0)| for every
finite B0 ⊂ B, then M has a solution.

Our goal is to analyze theorems on necessary and sufficient conditions for marriage
problems to have unique solutions. A marriage problem with a single boy has a unique
solution if and only if he knows exactly one girl. The following lemma shows that any
finite marriage problem with a unique solution must contain such a boy.

Lemma 4. (RCA0) If M = (B,G,R) is a finite marriage problem with a unique solution
f, then some boy knows exactly one girl.

Proof. Suppose we have M and f as above with |B| = n. Note that |GM(B)| = n, since
if |GM (B)| > n we could construct a new solution to M using a girl not in the range of f ,
contradicting the uniqueness of f .

Let s be the smallest number such that there is a B0 ⊂ B with |B0| = |GM(B0)| = s.
We know such an s exists by the Σ0

0 least element principle, a consequence of Σ0
1 induction.

If s = 1 then we have proved the lemma. Suppose by way of contradiction that s > 1
and choose b0 ∈ B0. Since s > 1, |GM(b0)| > 1, so we may choose g1 ∈ GM(b0) such that
f(b0) 6= g1. Consider M ′ = (B0−{b0}, GM (B0)−{g1}, R′) where R′ is the restriction of R
to the sets of M ′. We claim that M ′ has no solution. To see this, let h be a solution
of M′ and note that h ∪ (b0, g1) is a matching of (B0, GM(B0)) distinct from f . Since
|B0| = |GM(B0)|, f matches boys not in B0 to girls not in GM(B0), so we may define

f ′(b) =


g1 if b = b0

h(b) if b ∈ B0−{b0}
f(b) otherwise.

This f ′ is a solution of M differing from f at b0, contradicting the uniqueness of f . Thus
M ′ has no solution. Apply Theorem 1 and find a set of boys B1 ⊂ B0−{b0} who know too
few girls, that is, |B1| > |GM ′(B1)|. Since f is a solution of M , |B1| ≤ |GM ′(B1)∪{g1}| so
|B1| = |GM ′(B1) ∪ {g1}| = |GM (B1)|. However, |B1| < |B0|, contradicting the minimality
of s. Therefore s > 1 cannot hold, completing the proof of the lemma.

Now we can formulate a theorem on unique solutions to finite marriage problems.
Clearly, if we can line up the boys b1, b2, . . . , bn so that for each m ≤ n the first m boys
know exactly m girls, then the marriage problem has a unique solution. This implication
is provable in RCA0, as is its extension to infinite marriage problems. The following

50



theorem shows that the converse for finite problems is provable in RCA0. As noted by
Chang [2], the combinatorial statement in the theorem is implicit in the work of Marshall
Hall, Jr. [7].

Theorem 5. (RCA0) If M = (B,G,R) is a finite marriage problem with n boys and a
unique solution, then there is an enumeration of the boys 〈bi〉i≤n such that |G(b1, . . . , bm)|
for every 1 ≤ m ≤ n.

Proof. Suppose M is as above. Working in RCA0, we will construct a sequence of initial
segments of 〈bi〉i≤n. Apply Lemma 4 and let b1 be the first boy (in some enumeration of
B) such that |G(b1)| = 1. Suppose that t < n, 〈bi〉i≤t is defined, and |G(b1, . . . , bt)| = t.
Since M has a unique solution, so does M ′ = (B−{b1, . . . bt}, G−G(b1, . . . , bt), R

′), where
R′ is the restriction of R to the sets of M ′. Apply Lemma 4 and let bt+1 be the first boy
not in {b1, . . . , bt} such that |GM ′(bt+1)| = 1, completing the definition of 〈bi〉i≤t+1. The
desired enumeration is the nth initial segment.

In light of the comments preceding Theorem 5, it could be reformulated as a bicondi-
tional statement, giving a necessary and sufficient condition for the existence of unique
solutions to finite marriage problems. The same reformulation could be carried out for
Theorems 7 and 9 below. Now we will analyze a version of Theorem 5 in the infinite
setting, using ACA0 in its proof. Paralleling the proof of Theorem 5, we begin with a
lemma.

Lemma 6. (ACA0) Suppose M = (B,G,R) is a marriage problem such that every boy
knows finitely many girls and M has a unique solution. For any b ∈ B there is a finite
set F such that b ∈ F ⊂ B and |G(F )| = |F |.

Proof. Suppose f is the unique solution of M = (B,G,R). Let b ∈ B. If |G(b)| = 1, the
set F = {b} satisfies the conclusion of the lemma. If |G(b)| > 1, a more complicated
construction is required.

Assume |G(b)| > 1 and let g0 = f(b) and G(b) = {g0, g1, . . . , gm}. Consider the
marriage problem M1 = (B−{b}, G−{g1}, R1) where R1 denotes the restriction of R to
the sets of M1. Given a solution f1 of M1, the function f1 ∪ (b, g1) would be a solution
of M distinct from f . Thus M1 has no solution. Using ACA0, we may apply Theorem
2 and find a finite collection of boys E1 ⊂ B−{b} such that |E1| > |GM1(E1)|. Thus
|E1| ≥ |GM1(E1) ∪ {g1}| and since GM1(E1) ∪ {g1} = GM(E1), we have |E1| ≥ |GM(E1)|.
Since M has a solution, |E1| ≤ |GM(E1)|, so combining inequalities shows that |E1| =
|GM(E1)|. For each i with 1 < i ≤ m and each gi ∈ G(b) search for a similar finite set,
finding an Ei ⊂ B with |G(Ei)| = |Ei| and gi ∈ G(Ei). Since each Ei is a finite set with
an integer code, recursive comprehension suffices to prove the existence of the sequence
E1, E2, . . . , Em and the union F = {b} ∪i≤m Ei. Since each Ei is finite, F is finite and
b ∈ F ⊂ B.

To complete the proof, we need only show that |F | = |G(F )|. Suppose by way
of contradiction that |G(F )| > |F |. In this case, since f maps F into but not onto
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G(F ), we can choose g ∈ G(F ) such that for every c ∈ F , f(c) 6= g. Since f(b) = g0,
g 6= g0. If g ∈ G(b), then for some i ≥ 1 we have g = gi and g ∈ G(Ei). Since
G(F ) = G(b) ∪

⋃
i≤mG(Ei), we may fix an i such that g ∈ G(Ei). Since |Ei| = |G(Ei)|,

f must map Ei onto G(Ei), so for some c ∈ Ei, f(c) = g. This contradicts our choice
of g, showing that |G(F )| ≤ |F |. Since f is an injection of F into G(F ), we must have
|F | = |G(F )|.

Note that the only use of ACA0 in the preceding proof is the application of Theorem
2. This will be useful in adapting our results to the bounded marriage theorem setting.

Now we can analyze the extension of Theorem 5 to infinite marriage problems. Like
the result of Marshall Hall, Jr. analyzed in Theorem 2, this statement is equivalent to
ACA0.

Theorem 7. (RCA0) The following are equivalent:

1. ACA0.

2. Suppose M = (B,G,R) is a marriage problem such that every boy knows finitely
many girls. If M has a unique solution then there is an enumeration of the boys
〈bi〉i≥1 such that |G(b1, . . . , bn)| = n for every n ≥ 1.

Proof. To prove that (1) implies (2), we will work in RCA0, making each application of
ACA0 explicit. Let M = (B,G,R) be a marriage problem as described in (2). Let 〈b′i〉i≥1
be an arbitrary initial enumeration of B. Search for a finite set F1 ⊂ B such that b′1 ∈ F1

and |GM(F1)| = |F1|. Define n1 = |F1|. By Lemma 6, this search must succeed. Note
that ACA0 is used here in the application of Lemma 6 and to determine the value of
|GM (F1)|. We claim that f restricted to F1 is a unique solution of (F1, G(F1), R). To see
this, suppose f ′ is a solution of (F1, G(F1), R) differing from f . Since f is injective and
maps F1 onto G(F1), f must map B−F1 into G−G(F1), Thus the extension of f ′ defined
by

f ′(b) =

{
f ′(b) if b ∈ F1

f(b) if b ∈ B−F1

is a solution of M differing from f , contradicting the uniqueness of f . Since (F1, G(F1), R)
has a unique solution, by Theorem 5, there is an enumeration of the boys 〈b11, b12, . . . , b1n1

〉
of F1 such that |G(b11, b

1
2, . . . , b

1
m)| = m for every m with 1 ≤ m ≤ n1.

Suppose F1, . . . , Fj are sequences that have been constructed so that for each i ≤ j
and each t ≤ ni, Fi = 〈bi1, bi2, . . . , bini

〉 and

|G({bi1, bi2, . . . , bit} ∪
⋃
k<i

Fk)| = t+
∑
k<i

nk.

Note that f restricted to B− ∪k≤j Fj is a unique solution of the marriage problem
Mj+1 = (B− ∪k≤j Fk, G− ∪k≤j G(Fk), R). Let b′ denote the first element (in our initial
enumeration of B) appearing in B− ∪k≤j Fk. Search for a finite set Fj+1 ⊂ B− ∪k≤j Fk

52



such that b′ ∈ Fj+1 and |GMj+1
(Fj+1)| = |Fj+1|. Define nj+1 = |Fj+1|. As before, Lemma

6 insures that the search will succeed. ACA0 is applied here in the use of Lemma 6
and in determining values of |GMj+1

(Fj+1)|. As before, f restricted to Fj+1 is a unique
solution of Mj+1 restricted to Fj+1, so by Theorem 5 there is an enumeration of the boys
〈bj+1

1 , bj+1
2 , . . . , bj+1

nj+1
〉 in Fj+1 such that GMj+1

(bj+1
1 , . . . , bj+1

t )| for every t with 1 ≤ t ≤ nj+1.
Consequently, for every 1 ≤ t ≤ nj+1,

|G({bj+1
1 , bj+1

2 , . . . , bj+1
t } ∪

⋃
k≤j

Fk)| = t+
∑
k≤j

nk.

Given the existence of each finite sequence Fj, recursive comprehension suffices to prove
the existence of the concatenation of the finite sequences 〈〈bj1, . . . , bjnj

〉 | j ≥ 1〉, and this
sequence satisfies the conclusion of item (2) in the statement of the theorem.

To prove that (2) implies (1), we will work in RCA0 and assume (2). By Lemma III.1.3
of Simpson [18], it suffices to use (2) to prove the existence of the range of an arbitrary
injection. Let f : N→ N be an injection. Using recursive comprehension, construct the
marriage problem M = (B,G,R) with

• B = {cn | n ∈ N} ∪ {dn | n ∈ N},

• G = {gn | n ∈ N} ∪ {rn | n ∈ N},

• for every i, (ci, gi) ∈ R and (di, ri) ∈ R, and

• if f(m) = n then (cn, rm) ∈ R.

Let h : B → G such that h(di) = ri and h(ci) = gi for each i ∈ N. Clearly, h is injective
and a solution to M . Note that any solution must match each di with ri, thus no ci can
be matched to a ri and so every ci must be matched with gi. Hence, h is a unique solution
to M .

Apply item (2) and let 〈bi〉i≥1 be an enumeration of B such that for every n ≥ 1 we
have |G(b1, . . . , bn)| = n. Suppose f(j) = k. Then (ck, rj) ∈ R and G(ck) = {gk, rj}.
Since ck ∈ B, for some n we have ck = bn. If dj /∈ {b1, . . . , bn−1} then for each i ≤ n− 1,
G(bi) ∩G(ck) = ∅. In this case,

|G(b1, . . . , bn)| = |G(b1, . . . , bn−1)|+ |G(ck)| = (n− 1) + 2 = n+ 1,

contradicting |G(b1, . . . , bn)| = n. Summarizing, whenever f(j) = k, dj must appear
before ck in the enumeration of the boys. Thus k is in the range of f if and only if for
some b appearing before ck in the enumeration, b = dj and f(j) = k. Since we need only
check finitely many values of f to see if k is in the range, recursive comprehension proves
the existence of the range of f , completing the proof of the theorem.

Like Theorem 5, the preceding theorem continues to hold if the implication in item (2) is
changed to a biconditional. While such a formulation provides a complete characterization
of the marriage problems with unique solutions, it weakens the statement of the reversal.
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As noted in the introduction, bounded marriage problems are often weaker than their
unbounded versions. This is also true for the following bounded analogs of Lemma 6 and
Theorem 7, as shown by the next two results.

Lemma 8. (WKL0) Suppose M = (B,G,R) is a bounded marriage problem and M has
a unique solution. For any b ∈ B there is a finite set F such that b ∈ F ⊂ B and
|G(F )| = |F |.

Proof. Proceed exactly as in the proof of Lemma 6, replacing each application of Theorem
2 with an application of Theorem 3.

Theorem 9. (RCA0) The following are equivalent:

1. WKL0.

2. Suppose M = (B,G,R) is a bounded marriage problem. If M has a unique solution
then there is an enumeration of the boys 〈bi〉i≥1 such that |G(b1, . . . , bn)| = n for
every n ≥ 1.

Proof. To prove that (1) implies (2), repeat the corresponding portion of the proof of
Theorem 7, replacing uses of ACA0 with uses of WKL0 as follows. First, substitute Lemma
8 for Lemma 6 everywhere. Note that the bounding function for M also acts as a bounding
function for any marriage problem created by deleting sets of boys and girls from M .
Consequently, we may use the bounding function and recursive comprehension to compute
G(F ) for each finite set F whenever required.

The reversal requires a completely new argument. We will use (2) to prove that any
binary tree (with nodes labeled 0 or 1) with no infinite paths is finite. Toward this end,
suppose T is a binary tree with no infinite paths. As in section III.7 of Simpson [18], we
can identify each node of T with a binary sequence, σ ∈ 2<N. Construct the marriage
problem M = (B,G,R) by letting B = {bσ | σ ∈ T}, G = {gσ | σ ∈ T}, and

R = {(bσ, gσ) | σ ∈ T} ∪ {(bσ, gσai) | σ ∈ T ∧ σai ∈ T}.

Note that since G(bσ) = {gσ, gσa0, gσa1} ∩ G for all σ, M is a bounded marriage problem.
Define f : B → G by f(bσ) = gσ. We claim that f is a unique solution of M . To verify

this let f1 be a second solution of M where f1(bσ) = gσai for some i ∈ {0, 1}. Fix such a
σ and i and let σ0 = σ. Given σn let σn+1 = τ where f1(bσn) = gτ . Since f1 is injective,
an easy induction argument shows that σn+1 must always be an extension of σn. Hence,
〈σn | n ∈ N〉 forms an infinite path through T , yielding a contradiction. Thus f is unique.

Since M has a unique solution, we can apply item (2) to M and enumerate the boys
〈bi〉i≥1 so that |G(b1, . . . , bn)| = n for all n. Recursive comprehension proves the existence
of translation functions between the two types of subscripting on the boys. Let r : T → N
be the bijection defined by r(σ) = n if and only if bn = bσ.

We claim that each boy appears in the enumeration after all of his proper successors
in the tree. Using σ ≺ τ to denote that σ is a proper initial segment of τ , our claim
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becomes: if σ ≺ τ ∈ T , then r(σ) > r(τ). To prove this, suppose by way of contradiction
that for some σ ≺ τ ∈ T , r(σ) < r(τ). By the Σ0

0 least element principle (a consequence
of Σ0

1 induction) we can fix a shortest sequence τ such that r(σ) < r(τ) for some σ ≺ τ .
Because τ is shortest, there is no α such that r(α) > r(τ) and σ ≺ α ≺ τ . Thus we may
assume that τ is an immediate successor of σ. Summarizing, we have r(σ) < r(τ) and
τ = σai for some i ∈ {0, 1}. Let B′ = {b1, b2, . . . , br(σ)}. Using the node-based indices for
the boys, we can write B′ = {bα | r(α) ≤ r(σ)}. Note that r(τ) > r(σ), so bτ /∈ B′. By
the definition of M , (bσ, gτ ) ∈ R, so gτ ∈ G(B′). Also, for every bα ∈ B′, (bα, gα) ∈ R, so
gα ∈ G(B′). Thus |G(B′)| > |B′|. However, B′ is an initial segment of the enumeration
of B provided by the application of (2), so |G(B′)| = |B′|. This contradiction completes
the proof that each boy appears in the enumeration after all of his proper successors in
the tree.

The empty sequence 〈 〉 is in T , so for some n, b〈 〉 = bn Since bn appears after every
boy corresponding to a nonempty node of T , we know T is finite, completing the proof of
the reversal and the theorem.

At this time, we have been unable to determine the exact strength of some of the
lemmas in the preceding material. For example, although we know that Lemma 6 is
provable in ACA0, we do not know if it can be proved in a weaker subsystem. Consider
the following formulation of an infinite version of Lemma 4: If M is a marriage problem
in which each boy knows only finitely many girls and M has a unique solution, then
some boy knows exactly one girl. Lemma 6 and Lemma 4 give a proof in ACA0, but the
following theorem shows that at most WKL0 is required.

Theorem 10. (WKL0) Suppose M is a marriage problem in which every boy knows at
least two girls and at most finitely many girls. If M has a solution, then M has at least
two solutions.

Proof. Assume WKL0. Let M = (B,G,R) be a marriage problem with solution f : B → G
and suppose that every boy knows at least two girls. Define a function h0 : B → G
by letting h0(b) be the first girl other than f(b) that b knows. Formally, h0(b) =
µg((b, g) ∈ R ∧ f(b) 6= g). Define h1 : B → G by h1(b) = max{h0(b), f(b)} and let
R′ = {(b, g) | f(b) = g ∨ h0(b) = g}. Recursive comprehension proves the existence of
h0, h1, and R′. The society M ′ = (B,G,R′) is bounded by h1 and has f as a solution.
Every boy in M ′ knows exactly two girls. By Theorem 9, if f is a unique solution of
M ′, then some boy in B knows exactly one girl, contradicting the construction of M ′.
Consequently, M ′ has at least two solutions. Since every solution of M ′ is also a solution
M , M also has at least two solutions.
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