
Positional Weighted Voting and Linear Algebra

by

Kent Vashaw

Honors Thesis

Appalachian State University

Submitted to the Department of Mathematical Sciences
in partial fulfillment of the requirements for the degree of

Bachelor of Arts

May 2014

Approved by:

Vicky Klima, Ph.D., Thesis Director,
Mathematical Sciences Honors Director

Mark Ginn, Ph.D., Mathematical Sciences Department Chair

Positional Weighted Voting and Linear Algebra

Kent Vashaw

Abstract

Voting is a fundamentally mathematical concept; the mathematical field of voting theory was
pioneered by Donald Saari. In their paper “Voting, the Symmetric Group, and Representation The-
ory," Daugherty,Eustis, Minton, and Orrison build off Saari’s approach by applying representation
theory to the system that Saari has developed. In this paper, we reexamine the results of Daugherty,
Eustis, Minton, and Orrison by using a more linear algebra based approach. Specifically, we consider
ways to "weight" a voting profile, or, in other words, to score a particular ballot in a vote. This
question is important from a practical standpoint in considering the effectiveness or objectivity of
voting procedures.

We will prove an important result using linear algebra, namely that there are mathematically
infinitely ways people can vote that, when coupled with a specific weighting system, could lead to
a specific numerical result. However, this particular conclusion is not always applicable to practical
voting situations, and therefore we will show what these theoretically infinite ways people could
vote actually means in a real world scenario. We also look at the converse of our original question–
whether a particular way that people vote and a particular result can be connected via a weighting
system. We also look at the real-world reasonability of this question, and some implications that
come from it.

While this paper will only consider the mathematics behind this voting theory, the results will
certainly be of interest to anyone interested in ensuring that voting accurately represents the interests
of the parties involved, as these results will emphasize that the selection of a weight system for a
vote is often more important than the actual vote itself.

Contents
1 Introduction and Motivation 2

2 Positional weighted theory basics 3

3 Results regarding the weighting vectors 8

4 Proof by contradiction for arbitrary n 13

5 Reversal of Theorem 3.1 16

6 Reality? 23

7 The reasonable results space 24

8 An observation looking at the results space 26

9 A new voting technique? 27

10 Future research 28

1

1 Introduction and Motivation

Voting is a fundamentally mathematical concept; the mathematical field of voting theory was pioneered

by Donald Saari. Building off Saari’s work, which looks at a geometric approach to voting theory,

the paper [DEMO2009] by Daugherty, Eustis, Minton, and Orrison apply representation theory to the

system that Saari has developed. In this paper, we reexamine the results of Daugherty, Eustis, Minton,

and Orrison by looking at a more linear algebra based approach, and by recasting some of their theorems

in more real-life scenarios.

One of the primary motivations for studying voting processes with a mathematical approach is the

fundamental ambiguity that can arise from voting itself. To illustrate this phenomenon, we turn to a

classic example from Donal Saari in [Saari1998]. We can imagine a vote by a 15-member department

between beverage options – in this case, milk, wine, and beer – for the departmental picnic. The vote

is fully ranked – ie, every voter ranks all three candidates in order of preference. Imagine that our vote

goes like this:

Count 6 5 4

Preference

Schedule


milk

wine

beer



beer

wine

milk



wine

beer

milk


.

Now we can make some observations about this vote. First, we can see that milk is the most popular

first choice– six people chose milk first, five people chose beer first, and four people chose wine first.

However, milk is also the most popular last choice – nine people preferred milk the least, whereas on six

people preferred beer the least, and nobody chose wine the least. Should milk win, or lose? We have this

ambiguity. Imagine that we decide milk is the winner – and yet, due to an ironic turn of events, milk

is unavailable. Then should the department pick beer or wine? More people chose beer as a first choice

than wine – and yet, ten people chose wine over beer, whereas only five people chose beer over wine. In

a head-to-head, wine would be the winner. Again, it is ambiguous who should win and who should lose.

This fundamental ambiguity is what motivates the idea of positional weighted voting procedures – while

they do not completely remove the ambiguity shown here, they do allow a systematic way for picking a

winner and quantifying this ambiguity.

2

2 Positional weighted theory basics

We begin our discussion of voting theory by fully defining the process of weighted positional voting. For

a fully ranked vote, voters rank candidates from most preferred to least preferred, just like in Saari’s

example. If we have n candidates, the voting is equivalent to choosing a column vector of size n, where

the top entry of the vector is the number of the first choice, the second entry of the vector is the second

choice, et cetera. For example, for three candidates, wine, beer, and milk, a fully ranked vote means

that each voter picks one of the following vectors:


milk

wine

beer

 ,


milk

beer

wine

 ,


wine

milk

beer

 ,


wine

beer

milk

 ,


beer

milk

wine

 ,


beer

wine

milk

 . (1)

The idea of positional weighted voting, as outlined in [DEMO2009], is to assign a certain number of

points for a first place vote, a certain number of points for a second place vote, et cetera. For example,

if we assign one point for a first place vote, every time someone votes for a candidate in first place, that

candidate receives one point. At the end of the vote, the candidate with the most points is the winner.

There are many reasonable ways to set up a weighting system. For example a voting system could

award one point to first place and zero points to all other places, which would be a "winner-take-all"

type system of voting. On the other hand, a weighting system could also give one point to all places

except last place, which would be a "consensus" way of voting. A more descending-values type vote

might assign two points to first place, one point to second place, and no points to third place. There are

infinite variations of the different weighting systems.

Definition 1. A weighting vector, w, is the column vector that defines the weighting system of a vote

such that the jth column represents the number of points that the jth place receives.

The first element of the weighting vector is the weight for first place, and the second element of the

weighting vector is the weight for second place, et cetera. For size n = 3, if we wanted to give one point

for a first place, zero points for a second place, and negative one points for last place – note that we are

free to use negative values for point counts – we would use the weighting vector:


1

0

−1



3

Now, observe that all the vectors that the voters are choosing between are permutations of the

original list of candidates. Again, if we’re voting between milk, wine, and beer, then voting is the same

as choosing one of the permutations of the vector


milk

wine

beer

. We now fix an order to the permutations

(in the same way you fix an order for an ordered basis); for example, our order for n = 3 could be (1),

(23),(12),(132),(123),(13). Given this order, the order of our actual vectors is:


milk

wine

beer

 ,


milk

beer

wine

 ,


wine

milk

beer

 ,


wine

beer

milk

 ,


beer

milk

wine

 ,


beer

wine

milk

 .

Definition 2. A profile vector, p, is the column vector that encodes how many people voted for each

preference, in relation to the order of the preferences that we’ve fixed. The jth row represents the number

of people that voted for the jth preference in the fixed order.

The first element of the profile vector is the number of people that voted for the first preference

schedule, the second element of the profile vector is the number of people that voted for the second

preference, et cetera. Continuing with our example of a vote between milk, wine, and beer, if we had 10

voters, imagine we have the profile:

p =



3

2

0

0

4

1


.

Then the vote went like this:

Count 3 2 4 1

Preference

Schedule


milk

wine

beer



milk

beer

wine



beer

milk

wine



beer

wine

milk


.

Definition 3. From the weighting vector we generate the weighting matrix, Tw, such that the rows

of Tw correspond to the different candidates and the columns of Tw correspond to our orderings of the

4

preferences; Tw is then filled such that the i, j element is the number of points that candidate i receives

under the jth preference.

The matrix first element of the first row of Tw will be the number of points that our first candidate

receives under the first preference we’ve defined, aka the element of the weighting vector corresponding

to the first candidate’s position in that preference.

For our candidates milk, wine, and beer, we define the first row to correspond to milk, the second row

to correspond to wine, and the third row to correspond to beer. We define the columns to correspond

the preferences as we have listed them above. If, for now, we use the arbitrary weighting vector:

w =


w1

w2

w3

 ,

then we generate Tw as follows:

w1 w1 w2 w3 w2 w3
w2 w3 w1 w1 w3 w2
w3 w2 w3 w2 w1 w1

 milk
wine
beer

Tw =

m

w

b

m

b

w

w

m

b

w

b

m

b

m

w

b

w

m

.

We can now notice that the weighting matrix Tw is actually the permutations of the weighting vector

in the same order as the fixed permutations of the preferences.

Definition 4. The results vector, r, is the column vector where the jth element corresponds to the

points awarded to the jth, as ordered in the rows of Tw, candidate after a vote takes place.

If we conduct a vote between milk, wine, and beer, and find that milk has received ten points, wine

has received three points, and beer has received seven points, then our results vector is:

r =


10

3

7

 .

This now brings us to the fundamental equation of positional vector voting:

Twp = r. (2)

5

What this tells us is that multiplying our weighting matrix by our profile vector gives us the results

vector.

For example, if we use the weighting vector

w =


1

0

−1

 ,

we generate our weighting matrix:

Tw =


1 1 0 −1 0 −1

0 −1 1 1 −1 0

−1 0 −1 0 1 1

 .

And if we have the profile vector

p =



3

2

0

0

4

1


,

then we run our fundamental equation Twp = r:


1 1 0 −1 0 −1

0 −1 1 1 −1 0

−1 0 −1 0 1 1





3

2

0

0

4

1


=


4

−6

2

 .

This means that milk has scored four points, wine has scored negative six points, and beer has scored

two points, making milk the winner.

Example 2.1. While in some cases no matter what weighting system is used there’s a clear winner,

there are also many cases where selecting a weighting system determines a winner in and of itself. Here

is an example of one such paradox.

6

If we have a vote between four candidates, which we index one through four, where voters are asked

to rank these candidates from most preferred to least preferred, this is equivalent to asking our voters

to choose between the 24 permutations below, which we fix in this order:



1

2

3

4





1

2

4

3





1

3

2

4





1

3

4

2





1

4

2

3





1

4

3

2





2

1

3

4





2

1

4

3





2

3

1

4





2

3

4

1





2

4

1

3





2

4

3

1




3

1

2

4





3

1

4

2





3

2

1

4





3

2

4

1





3

4

1

2





3

4

2

1





4

1

2

3





4

1

3

2





4

2

1

3





4

2

3

1





4

3

1

2





4

3

2

1


.

Next we must determine our weighting system. We can define, as a basic, beginning step, first place

to receive one point, and last place to receive zero points, and used variables s and t for the second and

third places.Our weighting vector is defined as:

w =

(
1 s t 0

)T
.

From, w, we can derive Tw, the permutations of the weighting vector in the same order as the

permutations of the candidates in the order we’ve fixed:

Tw =



1 1 1 1 1 1 s s t 0 t 0 s s t 0 t 0 s s t 0 t 0

s s t 0 t 0 1 1 1 1 1 1 t 0 s s 0 t t 0 s s 0 t

t 0 s s 0 t t 0 s s 0 t 1 1 1 1 1 1 0 t 0 t s s

0 t 0 t s s 0 t 0 t s s 0 t 0 t s s 1 1 1 1 1 1


.

For a given profile p, encoded as a column vector such that the entry in column i corresponds to the

number of people that voted for the voting vector i, Tw(p) = r, where r is the results vector where the

score in the i row corresponds to the total points assigned to candidate i.

Let p = (6 8 2 5 0 0 2 0 6 0 2 4 4 3 3 2 1 2 0 3 6 8 5 2)T . Then apply our fundamental

7

equation of vector voting, r = Tw(p), to obtain

r =



21 + 12s+ 23t

14 + 33s+ 10t

15 + 20s+ 23t

24 + 9s+ 18t


.

If we go with a winner-take-all vote, we set s, t = 0, and r =



21

14

15

24


, candidate four is the winner.

If we go with a consensus system, we set r = s = 1, and r =



56

57

58

51


, although candidate four won

using the first weighting system, he now comes in last, and candidate three is the winner. We could

also allow points for the first two places on the ballot, so that s = 1, t = 0. In that case, r =



33

47

35

33


,

in which case candidate two is the clear winner. Finally, we could assign second and third place points,

but less than first place; for example, we could arbitrarily set s = t = .5, and r =



38.5

35.5

36.5

37.5


, in which

case, candidate one would be the winner. As shown, given a fairly simple set of candidates and profile,

with four different reasonable weighting systems you can get four different winners. Positional weighted

voting doesn’t eliminate the ambiguity in a vote– however, picking a weighting system allows us to select

a winner.

3 Results regarding the weighting vectors

We will be viewing Tw as a linear transformation of vector spaces. Since Nn is not a vector space, our

results space and profile space must be Qn. In [DEMO2009] Dougherty, Eustace, Minton, and Orrison

8

make an important observation. Namely, they show that since the results space can be decomposed

into a weighted space (the vector space spanned by the all-ones vector), direct summed with a sum-zero

space (which includes all vectors such that if you add all the elements of the vector together you get

zero). Intuitively, we can see that adding any multiple of the all-ones vector to a result will not change

the order of the candidates at all. What this means is that we can restrict the results space to sum-zero

vectors with no loss of information about the election itself. Since the results space lives in the span of

the column space of Tw, and each column of Tw will have the same sum (since they are permutations of

the same vector), this means we can restrict our weighting vectors to sum-zero vectors with no loss of

information as well. From this point on, when discussing weighting vectors and results vectors, it will

be assumed that these vectors are sum-zero.

This brings us to one of the major results of [DEMO2009].

Theorem 3.1. Let n ≥ 2, and let λ = (λ1, ..., λm) be a partition of n. Suppose that w1, ...,wk form

a linearly independent set of weighting vectors in Qm such that w̄1, ..., w̄k are sum-zero vectors. If

r1, ..., rk are any sum-zero results vectors in Qn, then there exist infinitely many profiles p ∈ Mλ such

that Twi(p) = ri for all i such that 1 ≤ i ≤ k.

For a fully-ranked vote, what this means is that given any sum-zero results vectors and any linearly

independent sum-zero weighting vectors, there are actually infinitely many profiles that will simultane-

ously connect the weighting vectors to the results via our fundamental equation Twp = r.

Example 3.1. To see how Theorem 3.1 works, let’s look at an example of what it means. Define our

weighting vectors to be

w1 =


1

0

−1

 , and w2 =


1

1

−2

 .

Now we define our results vectors as

r1 =


5

2

−7

 , and r2 =


4

−8

4

 .

Theorem 3.1 says that we should be able to find infinitely many profiles such that we can connect these

weighting vectors to these results. Notice that these weighting vectors are linearly independent and

sum-zero, and that these results are sum-zero, which are prerequisites for the applicability of Theorem

3.1. Now, we can generate our two weighting matrices from these weighting vectors such that we get the

9

following two equations:


1 1 0 −1 0 −1

0 −1 1 1 −1 0

−1 0 −1 0 1 1

 p =


5

2

−7

 and


1 1 1 −2 1 −2

1 −2 1 1 −2 1

−2 1 −2 1 1 1

 p =


4

−8

4

 .

We can solve this system easily using linear algebra by combining these two matrices into a single matrix,

and these two results vectors into a single vector, and then solving using row reduction for the profile.

When we do this, we get that:

p =



p5 + 1

p6 + 11

p6 + 6

p5 + 7

p5

p6


.

We see that this profile has two free variables; this means that there are infinitely many profiles which

would fit this criteria. Thus, for these specific weighting vectors and results, we see that Theorem 3.1

holds.

Dougherty et al prove their theorem using an argument from representation theory. We set out to

prove the same theorem using linear algebra tools. We begin with a smaller version of the theorem:

Theorem 3.2. Let n=3, and let λ = (λ1, ..., λm) be a partition of n. Suppose that w1, ...,wk form

a linearly independent set of weighting vectors in Qm such that w̄1, ..., w̄k are sum-zero vectors. If

r1, ..., rk are any sum-zero results vectors in Qn, then there exist infinitely many profiles p ∈ Mλ such

that Twi
(p) = ri for all i such that 1 ≤ i ≤ k.

Proof. Since if n=3 we have two linearly independent weighting vectors

w1 =


a

b

−(a+ b)

 , and w2 =


c

d

−(c+ d)

 .

10

And let our arbitrary results vectors be

R1 =


r1

r2

−r1 − r2

 , and R2 =


r3

r4

−r3 − r4

 .

We then generate our two Tw matrices based on these weighting vectors:

Tw1
=


a a b −a− b b −a− b

b −a− b a a −a− b b

−a− b b −a− b b a a

 ,

Tw2
=


c c d −c− d d −c− d

d −c− d c c −c− d d

−c− d d −c− d d c c

 .

We must show there are infinite profiles

p =



p1

p2

p3

p4

p5

p6


that solve the equations:

Tw1
p = R1, and

Tw2
p = R2.

We can combine these into a single equation by defining Tw to be Tw1
on top of Tw2

and R to be R1

on top of R2. Then we have

Twp = R,

11

or, more explicitly, we have



a a b −a− b b −a− b

b −a− b a a −a− b b

−a− b b −a− b b a a

c c d −c− d d −c− d

d −c− d c c −c− d d

−c− d d −c− d d c c





p1

p2

p3

p4

p5

p6


=



r1

r2

−r1 − r2

r3

r4

−r3 − r4


.

Note that, for both Tw and R, the third and sixth rows are each the negation of the two rows above

it, and therefore unnecessary to this system of equations. We can therefore cancel them out. This leaves

us with four equations to solve for six unknowns, meaning that there are either infinite solutions or none.

We now assume to the contrary, ie that there are no solutions to this system of equations. For this to

be the case, the remaining rows must be linearly dependent. Therefore, for some constants λ1, λ2, λ3, λ4,

not all zero, we have the following system of equations:

λ1a+ λ2b+ λ3c+ λ4d = 0 (3)

λ1a+ λ2(−a− b) + λ3c+ λ4(−c− d) = 0 (4)

λ1b+ λ2a+ λ3d+ λ4c = 0 (5)

λ1(−a− b) + λ2a+ λ3(−c− d) + λ4c = 0 (6)

λ1b+ λ2(−a− b) + λ3d+ λ4(−c− d) = 0 (7)

λ1(−a− b) + λ2b+ λ3(−c− d) + λ4d = 0 (8)

Note that 2λ1−λ2 and 2λ2−λ1 cannot both be zero, because as per the previous system of equations

this would imply λ1, λ2, λ3, λ4 are all zero, which is not possible.

If 2λ1 − λ2 6= 0 we can combine equations (3) and (4) to set:

(2λ1 − λ2)a = −(2λ3 − λ4)c,

a =
−(2λ3 − λ4)
2λ1 − λ2

c.

Similarly combining equations (5) and (7) yields b = −(2λ3−λ4)
2λ1−λ2

d, but then w1 divides w2 so we no

longer have linear dependence between our weighting vectors. 2λ1 − λ2 = 0.

12

Therefore, 2λ2 − λ1 6= 0. We can combine equations (3) and (8) to set:

(−λ1 + 2λ2)b = −(−λ3 + 2λ4)d

b =
−(2λ4 − λ3)
2λ2 − λ1

d.

Similarly combining equations (5) and (6) gives us a = −(2λ4−λ3)
2λ2−λ1

c. This means, again, that w1

divides w2, and therefore our weighting vectors are linearly dependent, which contradicts our assumption.

Therefore, there must be a solution to this problem, and therefore there are infinite solutions.

4 Proof by contradiction for arbitrary n

Next we generalize our results to prove Theorem 3.1.

Proof. This proof will follow the same steps as the proof for n=3, but for an arbitrary size of weighting

vector. Since our original theorem works for any linearly independent set of weighting vectors, and for

size n weighting vectors there can be up to n−1 total linearly independent weighting vectors, if we prove

that the theorem holds for n − 1 linearly independent weighting vectors it will hold for any number of

weighting vectors. Our weighting vectors {W1,W2, ...,Wn−1} are:



w1,1

w1,2

w1,3

...

w1,n−1

−(w1,1 + ...+ w1,n−1)


,



w2,1

w2,2

w2,3

...

w2,n−1

−(w2,1 + ..+ w2,n−1)


, ...,



wn−1,1

wn−1,2

wn−1,3

...

wn−1,n−1

−(wn−1,1 + ...+ wn−1,n−1)


.

We form our matrix Tw, where the columns represent all the permutations of the individual weighting

vectors (not the permutations of the whole column), and our arbitrary results vectors, and get our

13

equation: 

w1,1

w1,2

w1,3

...

w1,n−1

−(w1,1 + ..+ w1,n−1)

w2,1

w2,2

w2,3

...

wn−1,n−1

−(wn−1,1 + ..+ wn−1,n−1)





p1

p2

..

pn!


=



r1,1

r1,2

..

r1,n−1

−(r1,1 + r1,2 + ...)

..

rn−1,1

−(rn−1,n + rn−1,2 + ...)



.

Again, we cancel out every nth row, since, in both the result and Tw this row is the negation of the

n− 1 rows above it. We observe that, after canceling these rows out, we have n2 − 2n+ 1 rows and n!

columns. This means that, since n! > n2 − 2n+ 1 for n > 2, we have that there are either infinite or no

solutions. Again, for there to be no solutions, the remaining rows would have to be linearly dependent.

Therefore, for a set of constants {λ1,1, λ1,2, .., λ1,n−1, ..λn−1,n−1} we have our system of equations for

the rows: (λ1,1· row 1) + (λ1,2· row 2)+...+(λn−1,n−1· last row) = ~0. The subscript of the λ matches

the subscript of the weighting vector in the first column of the row that it’s multiplied by. We have a

different homogeneous equation for each column of our matrix.

Now select all the equations where the first element of the first weighting vector, ie w1,1, is multiplied

by λ1, and the other elements of the weighting vector are shifted down but not rearranged. Since each

weighting vector is run through the same set of permutations, for every weighting vector the first element

is also fixed in the first position, and the other elements are shifted by the same amount. We’ve selected

the set of equations:

14

λi,1wi,1 + λi,2(−wi,1 − wi,2 − ..− wi,n−1) + λi,3wi,2 + ..+ λi,n−1wi,n−2 = 0

λi,1wi,1 + λi,2wi,n−1 + λi,3(−wi,1 − wi,2 − ..− wi,n−1) + ...+ λi,n−1wi,n−3 = 0

λi,1wi,1 + λi,2wi,n−2 + λi,3wi,n−1 + ...+ λi,n−1wi,n−4 = 0

...

λi,1wi,1 + λi,2wi,3 + λi,3wi,4 + ...+ λi,n−1(−wi,1 − wi,2 − ..− wi,n−1) = 0.

Now, notice that every value multiplied by λi,1 is the value wi,1, and, since we cycle through the

weights with the other values, we get each other value λ multiplied by each element of the weighting

vector besides wi,1 as well as multiplied by the negation of all the elements of the weighting vector.

Therefore, when we combine all these equations, we find that, for each weighting vector:

((n− 1)λi,1 − λi,2 − λi,3 − ..− λi,n−1)wi,1 = 0.

So
n−1∑
i=1

((n− 1)λi,1 − λi,2 − λi,3 − ..− λi,n−1)wi,1 = 0.

We then combine the equations here where the second value of the weighting vector is multiplied by

λi,1, and the rest of the values are shifted through the other values and not rearranged. By combining

these equations, we see:

n−1∑
i=1

((n− 1)λi,1 − λi,2 − λi,3 − ..− λi,n−1)wi,2 = 0.

We continually do this for all the elements, finding that, for the kth value of the weighting vector,

n−1∑
i=1

((n− 1)λi,1 − λi,2 − λi,3 − ..− λi,n−1)wi,k = 0.

This means that:
n−1∑
i=1

((n− 1)λi,1 − λi,2 − λi,3 − ..− λi,n−1)Wi = 0.

15

If we repeat the same process, but fix the vectors multiplying by λi,2 instead of λi,1, we get:

n−1∑
i=1

((n− 1)λi,2 − λi,1 − λi,3 − ..− λi,n−1)Wi = 0.

We continue repeating this process, getting that, for all values 1 ≤ j ≤ n− 1

n−1∑
i=1

((n− 1)λi,j − λi,1 − λi,2 − ..− λi,n−1)Wi = 0.

But since the weighting vectors must be linearly independent, each coefficient ((n − 1)λi,j − λi,1 −

λi,2 − ..− λi,n−1) = 0. However, this implies that would mean that each value λ would have to equal 0,

which is a contradiction. Therefore, there must be a profile that solves for an arbitrary weighting vector

and results vector, which means that there are infinitely many solutions, thus proving Theorem 3.1.

5 Reversal of Theorem 3.1

Now that we’ve proven Theorem 3.1 – that for any set of linearly independent sum-zero weighting

vectors and any set of sum-zero results vectors, there are infinitely many profiles that connect these via

our fundamental equation – this leads to a natural reversal of the question: can any profile and results

vector be connected by choosing a weighting vector? Currently, we have restricted our considerations to

three-candidate elections.

In order to look at this question, we first need to reverse our fundamental equation Twp = r so

that we can examine the weighting vector as an independent variable we can manipulate. We want to

generate a matrix Tp from the profile p such that we’ve reversed our fundamental equation Tpw = r.

Definition 5. From the profile p we generate our profile matrix Tp such that the rows of Tp correspond

to the candidates and the columns of Tp correspond to the positions, ie 1st, 2nd, 3rd, etc., and the i, j

element of Tp corresponds to the number of voters who voted for the i candidate in the j position on

their ballot.

The first element of the first row of Tp will be the number of people that voted for the first candidate

as their first-place choice.

To see how this will work, using candidates wine, beer, and milk, and the ordering given in Equation

16

(1), suppose we’re given the generalized profile:

p =



p1

p2

p3

p4

p5

p6


.

Then we can see that (p1+p2) people voted for candidate one in first place; (p3+p4) voted for candidate

two in first place; (p5 + p6) people voted for candidate three in first place, et cetera. We generate Tp in

this way:

p1 + p2 p3 + p5 p4 + p6
p3 + p4 p1 + p6 p2 + p5
p5 + p6 p2 + p4 p1 + p3

 milk
wine
beer

Tp =

1st place 2nd place 3rd place

.

Now with this definition of our profile matrix Tp we can define our reversed fundamental equation of

positional weighted voting:

Tpw = r. (9)

Now we can multiply our profile matrix by our weighting vector to get our result.

We also now know that Twp = Tpw. We can illustrate that fact with an example. Here we’ll use

both a generalized weighting vector and a generalized profile vector:

p =



p1

p2

p3

p4

p5

p6


and w =


w1

w2

−w1 − w2

 .

17

Then, as we’ve shown, we can generate

Tw =


w1 w1 w2 −w1 − w2 w2 −w1 − w2

w2 −w1 − w2 w1 w1 −w1 − w2 w2

−w1 − w2 w2 −w1 − w2 w2 w1 w1

 ,

Tp =


p1 + p2 p3 + p5 p4 + p6

p3 + p4 p1 + p6 p2 + p5

p5 + p6 p2 + p4 p1 + p3

 .

Twp =


w1 w1 w2 −w1 − w2 w2 −w1 − w2

w2 −w1 − w2 w1 w1 −w1 − w2 w2

−w1 − w2 w2 −w1 − w2 w2 w1 w1





p1

p2

p3

p4

p5

p6



=


(p1 + p2 − p4 − p6)w1 + (p3 + p5 − p4 − p6)w2

(p3 + p4 − p2 − p5)w1 + (p1 + p6 − p2 − p5)w2

(p5 + p6 − p1 − p3)w1 + (p2 + p4 − p1 − p3)w2


and

Tpw =


p1 + p2 p3 + p5 p4 + p6

p3 + p4 p1 + p6 p2 + p5

p5 + p6 p2 + p4 p1 + p3




w1

w2

−w1 − w2



=


(p1 + p2 − p4 − p6)w1 + (p3 + p5 − p4 − p6)w2

(p3 + p4 − p2 − p5)w1 + (p1 + p6 − p2 − p5)w2

(p5 + p6 − p1 − p3)w1 + (p2 + p4 − p1 − p3)w2

 .

From this we can see that by generating either our profile matrix or our weighting matrix and then

applying either Equation (2) or Equation (9) leads to the same results vector outcome.

To examine our reversal of Theorem 3.1 we’re going to simplify the mechanics of Equation (9). We

18

look at the equation:

Tpw =


p1 + p2 p3 + p5 p4 + p6

p3 + p4 p1 + p6 p2 + p5

p5 + p6 p2 + p4 p1 + p3




w1

w2

−w1 − w2

 .

Notice that we can simplify this equation by eliminating the last column of Tp, the last row of w, and

adding the negation of the third column of Tp to every other column of Tp. We now verify that these

are equivalent:


p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5

p5 + p6 − p1 − p3 p2 + p4 − p1 − p3


w1

w2



=


(p1 + p2 − p4 − p6)w1 + (p3 + p5 − p4 − p6)w2

(p3 + p4 − p2 − p5)w1 + (p1 + p6 − p2 − p5)w2

(p5 + p6 − p1 − p3)w1 + (p2 + p4 − p1 − p3)w2


= Tpw.

We see that these are equivalent. As a reminder, our reversed question is: if we’re given a profile,

can we find a weighting vector to ensure a given result. Now we see that this is equivalent to asking: for

a given result, is that result in the column space of our matrix:


p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5

p5 + p6 − p1 − p3 p2 + p4 − p1 − p3

 .

If our result is in the column space of this matrix, we see that we can then generate a weighting vector

to ensure our result, given that our weighting vector just takes a linear combination of the columns of

this matrix. We see then that, since our columns of this matrix are sum-zero, and our result is sum-

zero, if the two columns of this matrix are linearly independent then they form a basis for the sum-zero

results space, and thus the result will be in the column space. Therefore, we can get our result as long

as columns

19


p1 + p2 − p4 − p6

p3 + p4 − p2 − p5

p5 + p6 − p1 − p3

 and


p3 + p5 − p4 − p6

p1 + p6 − p2 − p5

p2 + p4 − p1 − p3


are linearly independent. This will be true exactly when:

−p62 − p22 − p5p1 − p5p4 − p32 + p3p6 + p4
2 + p2p3 + p5

2 + p1
2 − p1p4 + p6p2 6= 0. (10)

We now observe three different types of profiles: profiles which only yield the zero result (ie both

columns of our matrix are zero), profiles which can yield only a result that is a multiple of a single vector

(ie the columns of our matrix are linearly dependent), and profiles which can yield any result (ie the

columns of our matrix are linearly independent). Now we’ll show that these three categories exist, and

what profile vectors in them look like.

For a profile to be in our first category, only yielding the zero result, both columns of our matrix

must equal zero: 
p1 + p2 − p4 − p6 p3 + p5 − p4 − p6

p3 + p4 − p2 − p5 p1 + p6 − p2 − p5

p5 + p6 − p1 − p3 p2 + p4 − p1 − p3

 =


0 0

0 0

0 0

 .

This means that we have the system of equations:

p1 + p2 − p4 − p6 = 0

p3 + p5 − p4 − p6 = 0

p3 + p4 − p2 − p5 = 0

p1 + p6 − p2 − p5 = 0

p5 + p6 − p1 − p3 = 0

p2 + p4 − p1 − p3 = 0.

Solving for this system of equations gives us:

p1 = p4 = p5

20

p2 = p3 = p6.

So we see that the profiles that can only give us the zero result are of the form:

p =



a

b

b

a

a

b


.

Example 5.1. We’ll now look at an example of a profile of this form. Imagine that we’re given the

profile:

p =



1

3

3

1

1

3


.

Now, we can look at a table for how many people voted for each candidate position:

1st place 2nd place 3rd place

Milk 4 4 4

Wine 4 4 4

Beer 4 4 4

We can see that no matter how we weight first, second, and third places, the candidates have to be

tied; and, since we’re working with sum-zero results vectors, this means that the result must be the zero

vector. Just to confirm, we can multiply this vector by our generalized weighting matrix:

Twp =


w1 w1 w2 −w1 − w2 w2 −w1 − w2

w2 −w1 − w2 w1 w1 −w1 − w2 w2

−w1 − w2 w2 −w1 − w2 w2 w1 w1





1

3

3

1

1

3


=


0

0

0

 .

21

This profile does indeed only give us the zero result, and any vector of the form we’ve shown can also

only ever give us the zero result.

We can also look at vectors for which we can only find results that are multiples of a certain vector.

We know we cannot generate any result from a given profile if the following equation holds:

−p62 − p22 − p5p1 − p5p4 − p32 + p3p6 + p4
2 + p2p3 + p5

2 + p1
2 − p1p4 + p6p2 = 0.

Solving this equation, we find that our solutions are of the form:

p1 = 1/2 p5 + 1/2 p4 ± 1/2
√
−3 p52 + 6 p5p4 − 3 p42 + 4 p62 + 4 p22 + 4 p32 − 4 p3p6 − 4 p2p3 − 4 p6p2.

Our profiles for which we cannot fully determine the point count of a result by changing the weighting

vector are the profiles of the form:

p =



1/2 p5 + 1/2 p4 ± 1/2
√
−3 p52 + 6 p5p4 − 3 p42 + 4 p62 + 4 p22 + 4 p32 − 4 p3p6 − 4 p2p3 − 4 p6p2

p2

p3

p4

p5

p6


.

Our total profile space is six-dimensional; inside it is a five-dimensional subspace that we cannot fully

determine the results; and inside that is a two dimensional subspace whose results will only be the zero

subspace.

Example 5.2. Just to look at an example of a profile for which we CAN determine the full point count

of our result by changing the weighting vector. Imagine we’re given the profile

p =



10

4

5

2

4

6


and

22

a generalized result

r =


r1

r2

−r1 − r2

 .

Then we can solve by generating our matrix Tp, and then row reducing that matrix with this result to

find the values of our weighting vector. When we do that, we find that our solution is:

w =


8
49 r1 −

1
49 r2

6
49 r2 +

1
49 r1

− 9
49 r1 −

5
49 r2

 .

We see then that for any result, we can then generate a specific weighting vector to match our profile

to our result via Equation (9).

Note that, since our total profile vector space is of a greater dimension than our vectors which we

cannot determine the result from, the percentage of nice profiles, for which we can determine the full

result, increases at a higher rate than not nice profiles; therefore, as the number of voters goes to infinity,

the percentage of profiles which you can, as in the example previous, choose any result by determining

a weighting vector goes to 100. This actually seems to correspond fairly tightly with Doughterty et al’s

Theorem 3.1, since the profiles we can find under Theorem 3.1 can be of any size, and, therefore, in some

sense, are allowed to be infinitely big, implying an infinite amount of voters. By restricting the voter

count, Theorem 3.1 would not necessarily hold.

6 Reality?

We now have a question about our parallel results from Theorem 3.1 and its converse question. As per

Theorem 3.1, we know that we can find infinitely many profiles to connect a set of linearly independent

weighting vectors to any set of results. However, Theorem 3.1 actually only guarantees that the infinitely

many profiles that we can find are vectors of rational numbers. We know that the profile represents the

number of people that vote for a particular preference. This means that for a profile to be possible in

the real world, it should be a vector of integers. Not all of the profiles we are guaranteed mathematically

under Theorem 3.1 are actually realistic.

Likewise, we also examine the realism of answer to the converse of Theorem 3.1. We’ve shown that,

for some profiles (most profiles, as the number of voters increases), you can find a weighting vector to

23

connect a profile vector to a results vector. However, the weighting vector corresponds to the weights

assigned to first place, second place, third place, et cetera. You would never, in a reasonable vote, assign

more points to last place than to first. We have this criteria of reasonable weighting vectors such that

the weighting vector’s values must be in descending order.

Definition 6. For three candidates, a reasonable weighting vector is one such that

w1 ≥ w2 ≥ w3.

Like we saw with Theorem 3.1, only a subset of the weighting vectors we can find under this reversal

could actually be used in the real world.

7 The reasonable results space

To illustrate an example of unreasonable and reasonable weighting vectors, we can revisit our example

of a profile from which you can generate any results. Recall:

p =



10

4

5

2

4

6


, w =


8
49 r1 −

1
49 r2

6
49 r2 +

1
49 r1

− 9
49 r1 −

5
49 r2

 .

And we know that from this profile, the total possible results space includes all sum-zero results

vectors, as we can find a weighting vector for any given result.

However, imagine we want to get the result

r =


−1

−1

2

 .

24

Then, as per our equation of the weighting vector:

w =


− 8

49 + 1
49

− 6
49 −

1
49

9
49 + 5

49

 .

From this, we can see very clearly that w3 is greater than w1 and w2. This means that under this

weighting scheme, we’d be giving more points to last place than to first or second – that system certainly

isn’t reasonable in a real world scenario.

In order to look solely at reasonable results, now we want to restrict our search to reasonable weighting

vectors. We can just impose the following inequality:

w1 ≥ w2 ≥ w3.

Which is, given this weighting vector:

8

49
r1 −

1

49
r2 ≥

6

49
r2 +

1

49
r1 ≥ −

9

49
r1 −

5

49
r2.

Remember that r1 is the total points awarded to Candidate 1, r2 is the total points awarded to

Candidate 2, and the total points awarded to Candidate 3 must be −r1 − r2. Now that we have this

inequality, this forms a reasonable results space.

Definition 7. The reasonable results space is the space spanned by the results from all possible rea-

sonable weighting vectors.

We can graph the inequality we’ve found in our current example, setting r1 on the x-axis and r2 on

the y-axis.

Figure 1: A reasonable results space

25

For our nice profiles we can find this reasonable results space and look at it graphically in this way.

8 An observation looking at the results space

If we are looking at the results space graphically, for our three candidates, milk, wine, and beer, such

that r1 (equal to the total points awarded to milk) is on the x-axis and r2 (equal to the total points

awarded to wine) is on the y-axis, and r3 (equal to the total points awarded to beer) is known to be

−r1− r2, then we can look at the portions of a graph such that each candidate is the winner; ie, there is

a portion of the graph that our first candidate, milk, is the winner; there’s a portion of the graph such

that wine, our second candidate, is the winner; and there’s a portion of the graph such that beer is the

winner. The area that would correspond to milk winning would be the area that solves the inequalities:

r1 > r2 and r1 > (−r1 − r2).

And the area that solves this is of the form:

x > 0, x > y and 2x > −y.

And likewise, we can solve for the area corresponding to each of the other candidates winning. The

following graph shows the results space divided up into it’s winning spaces (along the lines of the graph

we have ties between the candidates).

Figure 2: Winning results space

26

9 A new voting technique?

This seems to suggest to us a new technique of voting. One of the principle causes of ambiguity in

positional weighted voting is in the choosing of the weighting vector, out of many equally reasonable

weighting vectors; and, as we’ve shown, this choice of weighting vector can change the results of a

vote dramatically. But what looking at the reasonable results suggests to us is that we can vote in

this way without actually picking a specific weighting vector; rather, from any profile we can generate

its reasonable results space, and then calculate the proportions of that results space that lie in each

candidate’s winning space. Then the candidate with the highest percent is the winner of the election.

Instead of choosing a specific weighting vector, this method would be looking at all possible reasonable

weighting vectors.

As per our previous example, we can compare our graph of our reasonable results space with our

candidates’ winning regions, we see that clearly, candidate one would win.

Example 9.1. As another example, imagine we’re given the following reasonable results space for a

milk/wine/beer vote:

Figure 3: A reasonable results space

Then comparing this graph to our winning regions, we see that most of the reasonable results space

goes to milk; the second most goes to wine; and none of the reasonable results have beer winning. Thus,

by this new method of voting, we have milk winning, followed by wine, followed by beer. Notice that, if

we choose a specific weighting vector, wine could win.

27

10 Future research

Future research could explore how this potential voting technique lines up with certain established

standards for voting procedures– for example, the idea of a Condorcet winner, which is a winner who

beats any other individual candidate in a head-to-head preference of voters. We’re interested in how

and when this system produces Condorcet winners.

We’re also interested in looking at ways of representing this system with more than three candidates.

Obviously, in the way we’ve outlined here we need to be able to view a two-dimensional graph of the

reasonable results space; with more candidates, however, we would need to look at a higher-dimensional

graph. So potentially this procedure could be systematized for more than three candidates in the future.

Furthermore, Theorem 3.1 holds, in part, due to the fact that the profiles allowed under it can be of

an approaching infinitely large size. We could consider looking at the application of Theorem 3.1 when

we put a restriction on the number of voters. If we put such a restriction, when can we find a profile to

connect weighting vectors to results?

References

[Saari1998] Geometry, Voting, and Paradoxes. Donald G. Saari and Fabrice Valognes Mathematics Mag-

azine , Vol. 71, No. 4 (Oct., 1998) , pp. 243-259

[DEMO2009] Voting, the Symmetric Group, and Representation Theory. Zajj Daugherty, Alexander K.

Eustis, Gregory Minton and Michael E. Orrison The American Mathematical Monthly , Vol. 116,

No. 8 (Oct., 2009) , pp. 667-687

28

	Thesis Cover Page
	Vashaw_MathThesis

