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Abstract

In the late nineteenth century, Killing and Cartan discovered and classified all

finite-dimensional simple Lie algebras over the complex numbers. Shortly after

this, all irreducible representations of these algebras were classified as well. Among

these representations, minuscule representations play an important role.

It is known that the minuscule representations of simple Lie algebras are irre-

ducible. My goal is to show the irreducibility of a minuscule representation using

only the cycle structures of the Weyl group elements viewed as permutations acting

on the set of weights of that representation. In this project we focus on the simple

Lie algebras of type An and Dn. Using a computer program [Co], we are able to

study the cycle structures of these permutations and eliminate possible dimensions

of submodules to show the irreducibility of minuscule representations in many cases.



1 Introduction

This project is an attempt to show the irreducibility of minuscule representations of

finite dimensional Lie algebras using the cycle structure of Weyl group elements alone

as they act as permutations on the set of weights in an orbit. This problem has been

previously investigated for specific choices of minuscule weights for certain types of simple

Lie algebras.

We know from [CMS] that in type An we can always see the irreducibility of the

minuscule module of highest weight λ1 using one cycle structure, namely, the structure

of the Coxeter element. This element always yields an (n + 1)-cycle, and thus prevents

any non-trival proper submodules, as the set of weights has size (n + 1). Due to the

symmetry of the Dynkin diagram, this result also applies to λn.

More recently, we know that this system of showing irreducibility through cycle struc-

ture alone fails for many minuscule modules of type Bn, as shown in [CH]. Furthermore,

this paper conjectures that there are infinitely many minuscule modules of type Bn for

which this approach fails.

This paper investigates the remaining minuscule modules of simple Lie algebras of

types An and Dn. We found that one can see the irreducibility of all minuscule modules

of type An for n = 1, 2, 3, 4, 5, 6, 7, and 8, and also we can see the irreducibility of the

λ1, λ2, and λ3 minuscule modules for n = 9. Our computer program could not continue

for any other weights of A9 or higher ranks, but we conjecture that one can see the

irreducibility of the minuscule weights through cycle structures alone for all type An

simple Lie algebras. Unfortunately, the number of elements needed to see irreducibility
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will increase with rank and as the weights become closer to the center of the Dynkin

diagram. For type Dn, we show that one can see the irreducibility of all minuscule

weights through cycle structures alone for n = 4, 5, 6, and 7. We could not continue past

rank 7 for type Dn, but we conjecture that one can see irreducibility of type Dn for all

ranks and modules.

Since Lie algebras are unfamiliar to most undergraduate students, this paper will

provide a comprehensive background needed to fully understand the objective of our

project, followed by the results of the project.

2 Lie Algebras

To lay the ground work leading into this project, we must first discuss basic definitions

and common examples of Lie algebras, their properties, and related structures. This

background is essential to understanding the objective of the project.

Background information in the section is developed from chapters 1–5 of an introduc-

tory source, [M], and chapters 1–5 of a slightly more advanced source, [EW]. For more

comprehensive discussion of these concepts, we direct the reader to chapters 1 and 2 of

[Ca] and chapters 1–3 of [H1].

Lie algebras are built on top of vector spaces.

Example 2.1. Let V = Rn = {(x1, . . . , xn) | xi ∈ R} be the space of n-tuples of real

numbers. Scalars are real numbers, addition and subtraction operate component wise, and

scalar multiplication operates on each individual entry separately. V is a vector space.

Definition 2.2. A vector space L over a field F is a Lie algebra if there is a product
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(called “bracket”) [ · , · ] : L× L→ L, such that

1. The bracket is F-bilinear: [ax+ by, z] = a[x, z] + b[y, z] and [x, ay+ bz] = a[x, y] +

b[x, z] for all x, y, z ∈ L and a, b ∈ F.

2. The bracket is alternating: [x, x] = 0 for all x ∈ L.

3. The Jacobi identity holds: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

It is important to see that axioms 1 and 2 imply that [x, y] = −[y, x] for all x, y ∈ L

which is called skew symmetry. Also, the converse holds if char(F) 6= 2.

Notice also that the Jacobi identity works as a derivation property. Recall that a

derivation is a map d with d(a · b) = d(a) · b + a · d(b). If we consider the adjoint map,

ada, defined by ada(b) = [a, b], we can rewrite the Jacobi identity as:

ada([b, c]) = [ada(b), c] + [b, ada(c)],

and this may look similar to the product rule for derivatives.

Example 2.3. Let gln(F) = Fn×n be the vector space of all n × n matrices over a field

F. We can define the bracket by [A,B] = AB − BA for all A,B ∈ gln(F). This bracket

operation is known as the commutator bracket and is the most frequently used bracket

operation when working in Lie algebras. Equipped with this bracket gln(F) becomes a Lie

algebra.

Definition 2.4. Given an element x of a Lie algebra L, one defines the adjoint action

of x on L as the map: adx : L→ L with adx(y) = [x, y] for all y ∈ L.

Definition 2.5. A subalgebra K of L is a subspace of L which is closed under the Lie

bracket. Specifically, for each x, y ∈ K, we must have [x, y] ∈ K (briefly, [K,K] ⊆ K).
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Definition 2.6. A Lie algebra L is abelian if [x, x] = 0 for all x ∈ L (briefly, [L,L] = 0).

Example 2.7. Consider D the collection of all diagonal matrices in gln(F). Then D is

an abelian subalgebra of gln(F).

Example 2.8. Let sl2(F) =


a b

c −a


∣∣∣∣∣ a, b, c ∈ F

. Then

a b

c −a

 = ah + be + cf ,

where h =

1 0

0 −1

, e =

0 1

0 0

, and f =

0 0

1 0

. Then {h, e, f} forms a basis for

sl2(F). Using the commutator bracket, we have that:

[h, e] = 2e, [h, f ] = −2f, and [e, f ] = h.

Using this bracket structure sl2(F) = spanF {h, e, f} is a 3-dimensional Lie algebra.

We call this Lie algebra the special linear Lie algebra of 2× 2 matrices.

Definition 2.9. Let L be a Lie algebra. An ideal I of L, denoted I / L, is a subspace of

L such that for all x ∈ I and g ∈ L, we have [g, x] ∈ I (briefly, [L, I] ⊆ I).

In Lie algebras, there is no need to differentiate between left and right ideals because

of skew symmetry. If we have a left ideal of a Lie algebra L, then for all x ∈ I and

g ∈ L, [g, x] ∈ I. Skew symmetry gives us that [x, g] = −[g, x] ∈ I, so I is also a right

ideal. Similarly, right ideals must also be left ideals. Thus all ideals are two-sided in Lie

algebras.

Definition 2.10. A non-abelian Lie algebra with no proper non-trivial ideals is called

simple. In other words, L is simple if [L,L] 6= 0 and if I is an ideal of L, then I = 0 or

I = L.
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Definition 2.11. Let L be a a Lie algebra over field F. Then L(0) = L and

L(m) = [L(m−1), L(m−1)] for m = 1, 2, 3, . . .

are subalgebras of L with each L(m) and ideal of L(m−1). Additionally, the superset chain

L = L(0) ⊇ L(1) ⊇ L(2) ⊇ . . .

is called the derived series of L. A Lie algebra L is said to be solvable if L(m) = {0}

for some m.

Notice if a Lie algebra L is abelian, then L is solvable. We know this since L(1) =

[L,L] = 0. We also have if a Lie algebra L is simple then L = L(m) for all m.

We can consider abelian and simple to be at opposite ends of the spectrum: when L

is abelian L(k) is always zero (and never L itself), and when L is simple L(k) is always L

itself (and never 0).

Definition 2.12. Let L be a Lie algebra over a field F . The series of ideals

L = L0 ⊇ L1 ⊇ L2 ⊇ . . .

where Lj+1 = [L,Lj] for j = 1, 2, 3, . . . is called the lower central series of L. A Lie

5



algebra L is nilpotent if Lm = 0 for some m, in other words [[· · · [[L,L], L], . . . ], L]︸ ︷︷ ︸
m−times

= 0.

Note: From this point forward, we will be working over C (the complex numbers).

Proposition 2.13. If a Lie algebra L is abelian then L is nilpotent. If L is nilpotent

then L is solvable.

Proof. If a Lie algebra L is abelian then [L,L] = L1 = {0}, so L is nilpotent. Nilpotency

implying solvability can be proved using induction.

Notice that the converse of Proposition 2.13 does not hold. In other words, solvable

does not imply nilpotent, and nilpotent does not imply abelian.

Definition 2.14. Let ϕ : L1 → L2 be a linear map between two Lie algebras. We

call ϕ a homomorphism if ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ L1. We call ϕ an

isomorphism if ϕ is also bijective. We can also define the kernel of ϕ to be the set

ker(ϕ) = {x ∈ L1 | ϕ(x) = 0}. The kernel is an ideal of L1.

3 Lie Algebra Modules and the Killing Form

Using our background definitions from section 2, we can now introduce structures called

representations and modules. In general, this background is compiled from chapter 8 of

[M] and chapter 7 of [EW].

Definition 3.1. A homomorphism ϕ : L→ gl(V ) is called a representation of the Lie

algebra L on the vector space V. A representation is called finite dimensional if the vector

space V is finite dimensional.

6



Example 3.2. The map ad : L → gl(L) defined by ad(x) = adx for x ∈ L is a

representation of L on itself. This is called the adjoint representation. Additionally,

ker(ad) = {x ∈ L | ad(x) = 0} = {x ∈ L | [x, y] = 0 for all y ∈ L} = Z(L) which is

called the center of the lie algebra.

Definition 3.3. A finite dimensional vector space M over C equipped with a bilinear

L-action, say • : L ×M → M denoted (x,v) 7→ x •v is an L-module if [x, y] •v =

x • (y •v) − y • (x •v) for all x, y ∈ L and v ∈ M . A subspace of a module closed under

the action of L is called a submodule.

Definition 3.4. Let ϕ : M1 → M2 be a linear map between two L-modules. We call ϕ

an L-module map when ϕ(g •v) = g •ϕ(v) for all g ∈ L and v ∈ M1. Moreover, if ϕ

is bijective then ϕ is called an (L-module) isomorphism.

Lemma 3.5. Let ϕ : V → W be an L-module homomorphism. Then

• ker(ϕ) = {v ∈ V | ϕ(v) = 0} is a submodule of V.

• ϕ(V ) = {ϕ(v) ∈ W | v ∈ V } is a submodule of W.

Every module leads to a representation and every representation leads to a module.

We can define one from the other by x •v = ϕ(x)(v) for x ∈ L a Lie algebra and v ∈M

a finite dimensional vector space. Due to this fact, we will use the terms module and

representation interchangeably.

Definition 3.6. An irreducible module M is a non-trivial module (M 6= 0) with no

proper non-trivial submodules.
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Since the terms module and representation can be used interchangeably, we can simi-

larly define an irreducible representation:

A representation ϕ : L→ gl(V ) is irreducible if:

1. V 6= {0} and

2. {0} 6= U a subspace of V and (ϕ(x))(u) ∈ U , for all u ∈ U and x ∈ L implies

U = V .

Example 3.7. Any Lie algebra L is an L-module under the adjoint action. In this case

we have x • y = adx(y) = [x, y] for all x, y ∈ L. We also have that any submodule of L is

an ideal of L from Definition 3.3. Moreover, L is an irreducible L-module if and only if

L is simple or one-dimensional.

Lemma 3.8. (Schur’s Lemma) Let V be an irreducible L-module and ψ : V → W be

an L-module homomorphism. Then either ψ = 0 or ψ is invertible.

Proposition 3.9. The maximal solvable ideal containing all solvable ideals of L is called

the radical of L, and it is denoted by rad(L). A Lie algebra L is semisimple if rad(L) =

{0}.

See Proposition 1.13 in [Ca].

Theorem 3.10. A semisimple Lie algebra is the direct sum of simple Lie algebras.

See Theorem 5.2 in [H1].

If a Lie algebra L is simple, then L is not solvable. We then have rad(L) = {0}

(since the radical is a proper ideal and thus trivial) and so L is semisimple. Thus if a Lie

algebra L is simple, then L is semisimple.
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Definition 3.11. The Killing form κ(·, ·) : L× L→ C is defined by:

κ(x, y) = Tr(adx ◦ ady) for all x, y ∈ L.

where Tr denotes the trace of a linear transformation.

Theorem 3.12. (Cartan’s Criterion I)

Let V be a finite dimensional vector space over a field of characteristic zero and L ⊆ gl(V )

be a Lie algebra of split linear transformations on V . Then (x, y) = Tr(x ◦ y) = 0 for all

x ∈ [L,L], y ∈ L if and only if L is solvable.

Corollary 3.13. (Cartan’s Criterion II)

Let L be a finite dimensional Lie algebra over an algebraically closed field of characteristic

zero. Then: κ(x, y) = Tr(adx ◦ ady) = 0 for all x ∈ [L,L] and y ∈ L if and only if L is

solvable.

See Theorem 6.6 and Corollary 6.7 in [M] for proofs of Cartan’s Criterion I and II.

4 Simple Lie Algebras

In this section, we will explore the different types of simple Lie Algebras and how they

are classified. Our project focuses on type An and Dn, but here we define other types as

well, namely, the classical simple Lie algebras.

Material in this section is mainly drawn from chapters 12 and 13 of [EW] and chapters

1 and 8 of [H1]. We refer the reader to explore [EW] for an accessible discussion of these

topics, and [H1] for a more advanced approach.

Definition 4.1. sln(C) = {x ∈Mn+1(C) | tr(x) = 0, n ≥ 1} is type An.
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In order to define the classical algebras, we must be equipped with the following

definition: Let J ∈ gl(`,C) be a fixed matrix and set

glJ(`,C) = { A ∈ gl(`,C) | JA+ ATJ = 0 }.

Also recall that In is the n× n identity matrix.

Definition 4.2. When ` = 2n+ 1 and J =


1 0 0

0 0 In

0 In 0

, glJ(`,C) is denoted by

so(2n + 1,C) is called the odd special orthogonal Lie algebra. In the classification

this is referred to as type Bn.

Definition 4.3. When ` = 2n and J =

 0 In

−In 0

, the Lie algebra glJ(`,C) is denoted

by sp(2n,C). We classify this type of Lie algebra as type Cn, and we call it the sym-

plectic Lie algebra.

Definition 4.4. When ` = 2n and J =

O In

In 0

, glJ(`,C) is denoted by so(2n,C). We

classify this type of Lie algebra as type Dn, and we call it the even special orthogonal

Lie algebra.

Definition 4.5. Simple Lie algebras of types An, Bn, Cn, and Dn are called classi-

cal algebras, and algebras of types E, F, and G (which we will not define) are called

exceptional algebras.
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Theorem 4.6. (Killing and Cartan’s classification of simple Lie algebras).

Each finite dimensional simple Lie algebra (over C) is isomorphic to one of the following

algebras:

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, and G2.

For further discussion of the classification, we direct the reader to Theorem 13.1 in [EW].

Alternatively, see Theorem 11.4 in [H1].

Definition 4.7. A Cartan subalgebra h of a simple Lie algebra g is a subalgebra which

is nilpotent and self-normalizing (if x ∈ g, y ∈ h, and [x, y] ∈ h then x ∈ h).

Another way to define a Cartan subalgebra is that it is a maximal toral subalgebra (a toral

subalgebra is a subalgebra h where for all h ∈ h, ad(h) : g→ g is diagonalizable). Every

Cartan subalgebra of a finite dimensional simple Lie algebra g has the same dimension.

This dimension is called the rank of the simple Lie algebra.

Proposition 4.8. The restriction of the Killing form κ to the Cartan subalgebra h is

nondegenerate.

See Corollary 8.2 in [H1]

Remark 4.9. Every toral subalgebra h must be abelian. With this fact, we know that for

all x, y ∈ h, ad(x) and ad(y) commute with each other and so the space of endomorphisms

ad(h) can be simultaneously diagonalized.
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Recall if h be a vector space over C, the dual space of h is

h∗ = {f : h→ C | f is linear}.

It turns out that we can use the Killing form to induce an inner product on both h

and h∗. From now on we treat both Cartan subalgebras and their duals as Euclidean

(i.e. inner product) spaces. We will use (v, w) to denote the inner product of v and w.

Theorem 4.10. Let g be a simple Lie algebra (over C) and h be a Cartan subalgebra.

Then

g =
⊕
α∈h∗

gα

where

gα = {v ∈ g | [h, v] = α(h)v ∀h ∈ h}

If α 6= 0 and gα 6= {0}, then α is called a root of g and gα is its root space.

Moreover, g0 = h (the 0-space is the Cartan subalgebra).

This is Proposition 12.3 in [EW]. Also, see section 8.1 of [H1] for further discussion of

root space decomposition of simple Lie algebras.

We can think of root spaces as simultaneous eigenspaces decomposing g and the roots

as the eigenvalues corresponding to those eigenspaces. The set of roots has a particularly

nice structure which we call a root system, usually denoted R.

Proposition 4.11. Let R be the root system of a Lie algebra g relative to a Cartan

subalgebra h. Define the notation tα as tα ∈ h such that α(h) = κ(tα, h) for all h ∈ h.

1. R spans h∗.
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2. If α ∈ R then −α ∈ R.

3. Let α ∈ R, x ∈ g, and y ∈ g−α. Then [x, y] = κ(x, y)tα

4. If α ∈ R, then [gα, g−α] is one dimensional, with basis tα.

5. α(tα) = κ(tα, tα) 6= 0, for α ∈ R.

6. If α ∈ R and xα is any nonzero element of gα, then there exists yα ∈ g−α such that

xα, yα, and hα = [xα, yα] span a three dimensional subalgebra, Sα, isomorphic to

sl(2,F) via xα 7→

0 1

0 0

, yα 7→

0 0

1 0

, and hα 7→

1 0

0 −1

.

7. hα =
2tα

κ(tα, t−α)
; hα = −h−α.

See Proposition 8.3 in [H1].

Proposition 4.12. Let R be a root system of a Lie algebra g relative to a Cartan subalge-

bra h, and Let Sα ∼= sl(2,F) be a subalgebra of g as constructed in part (6) of Proposition

4.11. Then

1. α ∈ R implies dim(gα) = 1. In particular Sα = gα+g−α+hα, (hα = [gα, g−α]), and

for given nonzero xα ∈ gα, there exists a unique yα ∈ g−α satisfying [xα, yα] = hα

2. If α ∈ R, the only scalar multiple of α which are roots are α and −α..

3. If α, β ∈ R, then β(hα) ∈ Z, and β − β(hα)α ∈ R. We call the numbers β(hα)

Cartan integers.

4. If α, β, (α + β) ∈ R then [gα, g−α] = gα+β.
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5. Let α, β ∈ R, β 6= ±α. Let r, q, be (respectively) the largest integers for which

β−rα, β+qα are roots. Then all β+iα ∈ R (where −r ≤ i ≤ q), and β(hα) = r−q.

6. g is generated (as a Lie algebra) by the root spaces gα.

See Proposition 8.4 in [H1].

Theorem 4.13. Let g be a simple Lie algebra with Cartan subalgebra h, and root system

R. Then:

1. R spans h∗, and 0 does not belong to R.

2. If α ∈ R then −α ∈ R, but no other scalar multiple of α is a root.

3. If α, β ∈ R, then β − 2(β, α)

(α, α)
α ∈ R.

4. If α, β ∈ R, then
2(β, α)

(α, α)
∈ Z.

See Theorem 8.5 in [H1].

Note, we will begin using the following notation:

2(β, α)

(α, α)
= 〈β, α〉 (4.1)

Definition 4.14. A subset B of a root system R is a base for R if:

1. B is a vector space basis for our inner product space E = h∗, and

2. every β ∈ R can be written as β =
∑

α∈β kαα with kα ∈ Z, where all the non-zero

coefficients kα have the same sign.
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We say that a root β ∈ R is positive with respect to B if the coefficients given in

(2) of Definition 4.14 are positive. Similarly, if all of the coefficients are negative, then β

is negative with respect to B .

Theorem 4.15. Every root system has a base.

This is Theorem 11.10 in [EW].

Definition 4.16. Let R+ denote the set of the positive roots in a root system R with

respect to a base B, and let R− denote the set of the negative roots. Then R = R+ ∪R−,

a disjoint union. The set B is contained in R+. The elements of B are called simple

roots.

Example 4.17. The smallest simple Lie algebra is type A1 This is nothing more than

sl2 (the collection of 2 × 2 matrices with complex entries and trace 0). This example

is extremely important to understanding representation theory of finite dimensional Lie

algebras because each representation of a simple Lie algebra is built from from copies of

sl2. Recall from Example 2.8 our basis elements E, F , and H. We have that h = span(H)

is a Cartan subalgebra for sl2. If we define α1 ∈ h∗ by α1(H) = 2 then α1 is our simple

root and λ1 is our fundamental weight where α1 = 2λ1.

Definition 4.18. Given α ∈ h∗ can define

σα(β) = β − 2(β, α)

(α, α)
α = β − 〈β, α〉α

for all β ∈ h∗ where (β, α) is the inner product on h∗ induced from the inner product on

h which is in turn derived from the Killing form. The mapping σα is a reflection across

the hyperplane determined by α.
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The group of invertible linear transformations of the inner product space h∗ generated

by the reflections σα for α ∈ R is known as the Weyl group of the root system R.

It is important to note that the Weyl group acts simply transitively on the roots.

This means that only the identity fixes the entire root system and there is a Weyl group

element which sends any arbitrary root to any other arbitrarily chosen root. This then

implies that the Weyl group permutes the roots and is finite. See for example Theorem

1.8 in [H2]. Alternatively, Theorem 4.13 (3) gives us that simple reflections (see Definition

5.2) send roots to other roots, and from this it follows that the Weyl group permutes the

set of roots.

5 Representations of Simple Lie Algebras

The material in this section is drawn from chapters 7, 11, and 13 of [H1] and sections

13.1 and chapter 15 of [EW]. More information about the Cartan matrices and Dynkin

diagrams can be found in chapter 6 of [Ca].

Definition 5.1. Let λ1, . . . , λ` be the dual basis (relative to the inner product on h∗):

2(λi, αj)

(αj, αj)
= δij. We call these λi fundamental weights.

Definition 5.2. For each 1 ≤ i ≤ n, we call σαi
= σi a simple reflection associated

with the simple root αi.

Note that the Weyl group can be generated by the simple reflections alone. Recalling

the definition of the fundamental weights, we have that

σi(λj) = λj − 〈λj, αi〉αi = λj −
2(λj, αi)

(αi, αi)
αi = λj − δijαi
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where δij is the Kroneker delta, that is δij = 1 when i = j and δij = 0 when i 6= j.

Definition 5.3. A Cartan matrix of a root system R is the `×` matrix with ij-th entry

〈αi, αj〉 (as defined in Equation 4.1). The entries in a Cartan matrix are all integers.

Definition 5.4. The Dynkin diagram of a generalised Cartan matrix A is the graph

whose vertices are indexed by the row of the matrix and whose edges are described as

follows:

• If aijaji ≤ 4 and |aij| ≥ |aji|, the vertices i and j are connected by |aij| lines

equipped with an arrow pointing toward i if |aij| > 1;

• If aijaji > 4, the vertices i and j are connected by a line colored by the ordered pair

of integers |aij|, |aji|.

Let h be a Cartan subalgebra of g. The simple roots B = {α1, . . . , αn} form a basis

for h∗. The fundamental weights Λ = {λ1, . . . , λn} form another basis for h∗. The root

and weight bases are related by the Cartan matrix. Specifically, if C = (cij), then

αj =
∑̀
i=1

cijλi.

Let us list the Cartan matrices and Dynkin diagrams of the classial simple Lie alge-

bras: An, Bn, Cn, and Dn.

Type An algebras have Cartan matrices of the form:
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An =



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . . . . . . . . −1

0 0 0 0 −1 −2


The Dynkin diagrams of type An have the form:

} } } } }s s s
1 2 3 n− 1 n

Type Bn algebras have Cartan matrices of the form:

Bn =



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . . . . . . . . −2

0 0 0 0 −1 −2


The Dynkin diagrams of type Bn have the form:

z z z z zr r r @@
��1 2 n− 2 n− 1 n
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Type Cn algebras have Cartan matrices of the form:

Cn = BT
n =



2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1
. . . 0

0 0 −1 2
. . . 0

...
...

. . . . . . . . . −1

0 0 0 0 −2 −2


The Dynkin diagrams of type Cn have the form:

z z z z zr r r ��
@@1 2 n− 2 n− 1 n

Type Dn algebras have Cartan matrices of the form:

Dn =



2 −1 0 0 . . . 0

−1 2
. . . . . . . . . 0

0
. . . 2 −1 0 0

0
. . . −1 2 −1 −1

...
. . . 0 −1 2 0

0 0 0 −1 0 −2


The Dynkin diagrams of type Dn have the form:

z z z z

z

z

�
�
�
�
�
�

@
@
@
@
@
@

r r r
1 2 n− 3 n− 2

n− 1

n
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Theorem 5.5. Let g be a finite dimensional simple Lie Algebra over C, and let V be a

finite dimensional g-module. Then,

V =
⊕
λ∈h∗

Vλ

where

Vλ = {v ∈ V | h · v = λ(h)v ∀h ∈ h}

If Vλ 6= {0}, then λ is called a weight of V and Vλ is its weight space.

See section 7.1 of [H1] and section 15.1.1 of [EW] for further discussion of the weight

space decomposition.

Just like we are able to think of roots and root spaces as simultaneous eigenspaces

and their corresponding eigenvalues, we can also compare weights to eigenvalues, and

weight spaces to eigenspaces. As with roots, we also have that the Weyl group permutes

the set of weights. In other words, the Weyl group sends weights of a representation to

other weights of that representation.

Definition 5.6. For any g-module M , we know that M decomposes into weight spaces:

Mλ for λ ∈ h∗. The dimension of a weight space Mλ is called the multiplicity of the

weight λ.

Theorem 5.7. Let M be an irreducible g-module. There exists a (unique) weight λ ∈ h∗

of M such that given any other weight µ ∈ h∗ we have µ = λ−
∑n

i=1 biαi where the bi’s are

non-negative integers. In other words, every other weight can be obtained by subtracting

collections of positive roots from this weight λ called the highest weight of M.

See Theorem 10.20 in [Ca], or alternatively, see Lemma 15.3 of [EW].
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Theorem 5.8. Any two irreducible modules with the same highest weight are isomorphic.

The converse also holds: Any two isomorphic irreducible modules have the same highest

weight.

See Theorem 10.21 of [Ca]. chapter 10 in [Ca] provides more information on irreducible

modules.

Definition 5.9. Let L(λ) be a finite dimensional irreducible g-module with highest weight

λ ∈ h∗ and λ 6= 0. Then λ is a minuscule weight and L(λ) is a minuscule module

if the Weyl group W (g) acts transitively on the set of weights of L(λ).

If µ = w(λ) for µ, λ ∈ h∗ and w ∈ W , then the corresponding weight spaces Mµ

and Mλ have the same dimension. It follows that weights in the Weyl orbit all have the

same multiplicity. Notice also that in an irreducible module, the highest weight is always

one-dimensional, and so the dimension of a minuscule module is the same as the number

of its weights.

We have from [H1] a very useful theorem regarding the minuscule weights of the finite

dimensional simple Lie algebras.

Theorem 5.10. Minuscule weights for finite dimesnional simple Lie algebras

Type: An Bn Cn Dn E6 E7

Minuscule Weights: λ1, . . . , λn λn λ1 λ1, λn−1, λn λ1, λ6 λ7

Type F4, E8, and G2 algebras have no minuscule weights.

This theorem is provided in the form of a table in Exercise 13 of section 13.4 of [H1].
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6 Seeing Irreducibility Through Cycle Structures

Now that we have the necessary background, we can delve into our project objective.

The question we would like to answer is: can we see the irreducibility of a minuscule

module through the cycle structures of its Weyl group alone? This question has been

previously investigated for some of the minuscule weights of various finite dimensional

simple Lie Algebras.

In a different project, [CMS] investigated the cases of the first minuscule weight, λ1,

of types An (n ≥ 1), Cn (n ≥ 3), Dn (n ≥ 4), as well as E6 and E7. Their results are

provided in the following paragraphs.

If we look at the set of weights for L(λ1) for type An, then the set of weights is of

size (n + 1). We see because the Coxeter element is an (n + 1)-cycle, the only allowed

dimensions for submodules are 0 and (n + 1). Therefore, this minuscule representation

must be irreducible. This follows from cycle structure alone! This is also the case with

L(λn) because of the symmetry in the Dynkin Diagram.

Type Cn has only one minuscule weight: λ1. The set of weights for L(λ1) for type

Cn is of size 2n. In this project, [CMS] found that the Coxeter element is a 2n-cycle,

allowing for submodules of dimension 0 or 2n, thus showing the irreducibility of L(λ1)

using cycle structures alone.

Investigating the first minuscule weight (λ1) of type Dn, we have that the set of

weights is, similar to type Cn, of size 2n. The authors of [CMS] found that there will be

one element of a pair of n-cycles, and a second element of one (2n−2)-cycle and a 2-cycle.

This would only allow for submodules of dimension 0 or 2n, showing the irreducibility of
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L(λ1) through cycle structures alone.

The only exceptional algebras that have minuscule weights are types E6 and E7. Type

E6 has two minuscule weights, λ1 and λ6. For E6 and λ1 we have the dimension of L(λ1)

is 27. The authors of [CMS] showed that this minuscule module is irreducible using the

occurrence of an element with 2×12-cycles and a 3-cycle with a second element made

of 3×9-cycles. Intersecting the possible submodule dimensions that these two elements

would allow, we have that the only possibilities are 0 and 27. This result can be extended

to L(λ6) due to the symmetry in the Dynkin diagram of type E6. Looking at type E7,

there is only one minuscule weight: λ7. This set of weights is of size 42. We can see

the irreducibility of L(λ7) using two elements: one element made of 3×18-cycles and a

3-cycle, and another made of 3×14-cycles. These two elements show that it the only

possible submodule dimensions are 0 and 42, showing the irreducibility of L(λ7) using

only cycle structures.

After the publication of [CMS], the only remaining minuscule weights to investigate

were λ2, . . . , λn−1 of type An, λn−1 and λn of type Dn, and λn of type Bn. The paper

[CH] explored showing irreducibility of type Bn’s only minuscule weight λn and found that

for many ranks of type Bn it is impossible to show irreducibility using cycle structures

alone. In [CH], the authors successfully showed that we can see irreducibility through

cycle structures alone for n = 2, 3, 5, and 7. The approach fails for n = 4, 6, 8, 9, 10, 11,

and 12. This paper, [CH], conjectures that the approach continues to fail for higher

ranks.

Our project specifically looks into the remaining cases for types An and Dn, as men-

tioned above. From this point forward, we will use the notation W (λi) to indicate the
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set of weights in the orbit of λi, and |W (λi)| its dimension.

All fundamental weights of type An are minuscule weights, so we must examine the

cycle structures of permutations on W (λ1), · · · ,W (λn). Note that in type An the Dynkin

diagram is symmetric, so action on W (λi) and W (λn−i) is essentially the same. We only

need to look at half of the weights to make claims about them all.

When investigating type Dn we have three minuscule weights to investigate: λ1, λn−1

and λn. There is also symmetry in Dn’s Dynkin diagram, so actions on W (λn−1) and

W (λn) are essentially the same.

Our project produced the results found in the following table. The notation cji rep-

resents a j cycles of length i. For example in type A2 the minuscule weight λ1 can be

shown is irreducible by c3, or one cycle of length 3.
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Irreducibility of type An Classical Algebra
Algebra
Type

Minuscule
Weight
(λk)

|W (λk)| Cycle Struc-
ture of Cox-
eter Element

Cycle Structures Used
to Show Irreducibility

A2 λ1 3 c3 c3
A3 λ1 4 c4 c4

λ2 6 c4c2 c4c2 and c23
A4 λ1 5 c5 c5

λ2 10 c25 c25 and c24c2
A5 λ1 6 c6 c6

λ2 15 c26c3 c26c3 and c35
λ3 20 c36c2 c36c2 and c45

A6 λ1 7 c7 c7
λ2 21 c37 c37 and c3c

3
6

λ3 35 c57 c57 and c75
A7 λ1 8 c8 c8

λ2 28 c38c4 c38c4 and c47
λ3 56 c78 c78 and c87
λ4 70 c88c4 c88c4 and c107

A8 λ1 9 c9 c9
λ2 36 c49 c49 and c48c4
λ3 84 c99c3 c99c3, c

12
7 , and c108 c4

λ4 126 c149 c149 , c514, and c158 c4c2
A9 λ1 10 c10 c10

λ2 45 c410c5 c410c5 and c59
λ3 120 c10]

12 c1210, c
14
8 c

2
4, and c139 c3

Irreducibility of type Dn Classical Algebra
Algebra
Type

Minuscule
Weight
(λk)

|W (λk)| Cycle Struc-
ture of Cox-
eter Element

Cycle Structures Used
to Show Irreducibility

D4 λ1 8 c6c2 c6c2 and c24
D5 λ1 10 c8c2 c8c2 and c6c4

λ5 16 c28 c28 and c12c4
D6 λ1 12 c10c2 c10c2 and c8c4

λ6 32 c310c2 c310c2 and c48
D7 λ1 14 c12c28 c12c2 and c10c4

λ7 64 c512c4 c320c4 and c97c1

From the results in [CMS], we know that for type An, λ1 (and thus λn) only requires

one element of the Weyl group to show irreducibility, but all other weights will require

at least two elements to show irreducibility. For these other weights, we must examine
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them case-by-case. We conclude with several examples:

Example 6.1. A3, λ2: This type and weight requires two different elements to show ir-

reducibility. Since |W (λ2)| = 6 we need to show that the only possible submodule

dimensions are 0 and 6.

• The Coxeter element has 1 × 4-cycle and 1 × 2-cycle. This allows for sub-

modules of size 0, 2, 4, and 6.

• Another element is made up of 2 × 3-cycles, and that allows for submodules

of size 0, 3, and 6.

When we intersect the submodule dimensions that these two elements allow, we

only have dimension 0 and 6, so this minuscule module L(λ2) is irreducible. There

is no equivalent weight by symmetry of the Dynkin diagram.

Example 6.2. A8, λ4: This set of weights has |W (λ4)| = 126.

• The Coxeter element has structure 14 × 9-cycles. This allows for submodules of

dimension 0, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, and 126.

• We also have an element structured by 5 × 14-cycles and 8 × 7-cycles. This allows

for submodule dimensions in multiples of seven: 0, 7, 14, 21, 28, 35, 42, 49, 56,

63, 70, 77, 84, 91, 98, 105, 112, 119, 126.

Intersecting these possibilities, we are left with possible submodule dimensions 0,

63, and 126.

• We have another element with structure 15 × 8-cycles, 1 × 4-cycles, 1 × 2-cycles,
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this element will only allow for even submodule dimension, ruling out 63 as a pos-

sibility.

This will leave us with possible submodule dimension 0 and 126, showing irreducibil-

ity. In A8, λ4 is equivalent to λ5 by symmetry. These weights require 3 elements

to show irreducibility using cycle structure.

Example 6.3. D5, λ1: In this case we have that |W (λ1)| = 10 so we need to show that

the only possible submodule dimensions are 0 and 10.

• The Coxeter element has structure 1 × 8-cycle and 1 × 2-cycle, allowing

submodule dimension 0, 2, 8 and 10.

• We have another element with cycle structure 1 x 6-cycle and 1 × 4-cycle so

this allows for submodule sizes 0, 4, 6, and 10.

Intersecting these possibilities we only have possible submodule dimensions 0 and

10, so this minuscule module L(λ1) is irreducible.

Example 6.4. D5, λ4: In this case we have that |W (λ1)| = 16 so we need to show that

the only possible submodule dimensions are 0 and 16.

• The Coxeter element has structure 2 × 8-cycles, allowing submodule dimension

0, 8 and 16.

• We have another element with cycle structure 1 × 12-cycle and 1 × 4-cycle

so this allows for submodule sizes 0, 4, 12, and 16.

Intersecting these possibilities we only have possible submodule dimensions 0 and
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16, so this weight is irreducible. Under the symmetry of the Dynkin diagram, we

can also say that L(λ5) is also irreducible.

Finally, we can conclude from these results that irreducibility of the minuscule repre-

sentations of type An can be seen from cycle structures alone when n = 1, 2, 3, 4, 5, 6, 7, 8,

and part of 9. We could not continue past n = 9 with our computer code [Co]. We conjec-

ture that one can successfully show irreducibility of type An for all n using cycle structure

alone, but the number of elements required to show irreducibility will increase. We also

expect that this problem will grow more difficult as one approaches the weights toward

the middle of the Dynkin diagram.

In type Dn we can see irreducibility of the minuscule representation from cycle struc-

tures alone when n = 4, 5, 6, and 7. We could not continue past n = 7 with our current

computer code. We conjecture that you can successfully show irreducibility of type Dn

for all n using cycle structure alone.
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